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FOREWORD 

Since its establishment in 1976, Acharya Nagarjuna University has been 
forging ahead in the path of progress and dynamism, offering a variety of courses 
and research contributions. I am extremely happy that by gaining ‘A+’ grade from 
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational 
opportunities at the UG, PG levels apart from research degrees to students from 
over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.  

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the 
society. The centre will be a great help to those who cannot join in colleges, those 
who cannot afford the exorbitant fees as regular students, and even to housewives 
desirous of pursuing higher studies. Acharya Nagarjuna University has started 
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A., 
M.Com., M.Sc., M.B.A., and L.L.M., courses at the PG level from the academic 
year 2003-2004 onwards.  

To facilitate easier understanding by students studying through the distance 
mode, these self-instruction materials have been prepared by eminent and 
experienced teachers. The lessons have been drafted with great care and expertise 
in the stipulated time by these teachers. Constructive ideas and scholarly 
suggestions are welcome from students and teachers involved respectively. Such 
ideas will be incorporated for the greater efficacy of this distance mode of 
education. For clarification of doubts and feedback, weekly classes and contact 
classes will be arranged at the UG and PG levels respectively.  

It is my aim that students getting higher education through the Centre for 
Distance Education should improve their qualification, have better employment 
opportunities and in turn be part of country’s progress. It is my fond desire that in 
the years to come, the Centre for Distance Education will go from strength to 
strength in the form of new courses and by catering to larger number of people. My 
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavors.  

Prof. K. Gangadhara Rao 
M.Tech., Ph.D., 

Vice-Chancellor I/c  
Acharya Nagarjuna University. 

 



 

M.SC. PHYSICS 
SYLLABUS 

SEMESTER-I, PAPER-II 
102PH24-INTRODUCTORY QUANTUM MECHANICS 

Course Objectives: 

 Introduction of Quantum Mechanics and the Schrodinger equation 

 To acquire mathematical skills require to develop theory of quantum mechanics  

 To develop understanding of postulates of quantum mechanics and to learn to apply 
them to solve some quantum mechanical systems 

 To offer systematic methodology for the application of approximation methods to 
solve complicated quantum mechanical systems 

UNIT-I (Schrodinger Wave Equation and One Dimensional Problem) 

Why QM? Revision; Inadequacy of classical mechanics; Schrodinger equation; continuity 
equation; Ehrenfest theorem; admissible wave functions; Stationary states. One- dimensional 
problems, wells and barriers. Harmonic oscillator by Schrodinger equation. 

Learning Outcomes: 

 Students will learn the difference between classical mechanics and quantum 
mechanics. 

UNIT-II (Linear Vector Spaces and Operators) 

Linear Vector Spaces in Quantum Mechanics: Vectors and operators, change of basis, 
Dirac's bra and ket notations. Eigen value problem for operators. The continuous Hermitian, 
unitary, spectrum. Application to wave mechanics in one dimension. projection operators. 
Positive operators. Change of orthonormal basis, Orthogonalization procedure, uncertainty 
relation. 

Learning Outcomes: 

 Students will learn the mathematical formalism of eigen values, eigen states of wells 
and barriers and unitary operators, hermitian operators, which form the fundamental 
basis of quantum theory. 

UNIT III (Orbital Angular Momentum) 

Angular momentum: Commutation relations for angular momentum operator, Angular 
Momentum in spherical polar coordinates, Eigen value problem for L2 and L2, L + and L 
operators Eigen values and eigen functions of rigid rotator and Hydrogen atom 



 

Learning Outcomes: 

 Learn commutations relations for angular momentum operator and its applications in 
daily life. 

 Application to rigid rotator, hydrogen-like atoms and angular momentum operators 
will teach the students how to obtain eigen values and eigen states for such systems 
elegantly. 

UNIT IV (Time-Independent Perturbation Theory) 

Time-independent perturbation theory; Non-degenerate and degenerate cases; applications to 
(a) normal helium atom (b) Stark effect in Hydrogen atom. Variation method. Application to 
ground state of Helium atom, WKB method. 

Learning Outcomes: 

 To understand the concepts of time-independent perturbation theory and their 
applications to physical situations. 

 Studying the applications of Non-degenerate and degenerate cases in perturbation 
theory 

 Learning the variation and WKB methods 

UNIT V (Time Dependent Perturbation Theory) 

Time Dependent Perturbation: General perturbations, variation of constants, transition into 
closely spaced levels -Fermi's Golden rule. Einstein transition probabilities, Interaction of an 
atom with the electromagnetic radiation. Sudden and adiabatic approximation. 

Learning Outcomes: 

 Students will learn how to use perturbation theory to obtain corrections to energy 
eigen-states and eigen-values when an external electric or magnetic field is applied to 
a system. 

 Learning the significances of Fermi's Golden rule. 

 To teach the students various approximation methods in quantum mechanics.  

Course Outcomes: 

 Understand historical aspects of development of quantum mechanics.  

 Understand and explain the differences between classical and quantum mechanics.  

 Understand the central concepts and principles in quantum mechanics, such as the 
Schrodinger equation, the wave function and its statistical interpretation, the 
uncertainty principle, stationary and non-stationary states, wells and barriers, 
harmonic oscillator, as well as the relation between quantum mechanics and linear 
algebra including understanding of linear vector spaces.  



 

 They will master the concepts of angular momentum and spin, as well as the rules for 
quantization and addition of these. Hence they will be able to solve the complex 
systems by approximation method. 

Text and Reference Books: 

1) Eugen Merzbacher, Quantum Mechanics, Wiley. 

2) LI Schiff, Quantum Mechanics (Mc Graw-Hill). 

3) B Crasemann and JD Powell, Quantum Mechanics (Addison Wesley). 

4) A P Messiah, Quantum Mechanics. 

5) J J Sakural, Modem Quantum Mechanics. 

6) Mathews and Venkatesan Quantum Mechanics. 

7) Quantum Mechanics" by R.D. Ratna Raju. 

8) Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics by 
S.P. Kuila, Books and Allied, Kolkata. 

 

  



 

 (102PH24) 
M.Sc. DEGREE EXAMINATION, MODEL QUESTION PAPER 

M.Sc. PHYSICS-FIRST SEMESTER 
INTRODUCTORY QUANTUM MECHANICS 

Time: Three hours  Maximum: 70 marks 
Answer ALL Questions 

All Questions Carry Equal Marks 

1 a) Explain about the Schrodinger wave equation. 
b) Explain about the One-dimensional problems. 

OR 

c) Explain about the Stationary states. 
d) Briefly explain about the admissible wave functions. 

2 a) Explain about the change of basis in linear vector spaces. 
b) Write a note on vectors and operators 

OR 

c) Explain about Dirac’s bra and ket notations. 
d) Write about the Change of orthonormal basis. 

3 a) Write about the Eigen values and Eigen functions of rigid rotator and hydrogen 
atom. 

b) Explain about the Angular momentum in spherical polar coordinates. 

OR 

c) Write about the communication relations for angular momentum operator. 
d) Explain about the Eigen value for ܮଶ andܮ௭. 

4 a) Briefly explain about the Variation method 
b) Explain about the Time-independent perturbation theory for Non degenerate system. 

OR 

c) Briefly explain about the WKB method. 
d) Explain about the Application to ground state of Helium atom. 

5 a) Explain about the Time dependent perturbation theory. 
b) Write a note on Fermi’s Golden rule. 

OR 

a) Describe the Interaction of an atom with the electromagnetic radiation. 
b) Describe the Sudden and adiabatic approximation. 
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LESSON-1 

SCHRODINGER EQUATION 

1.0 AIM AND OBJECTIVES: 

The primary goal of this chapter is to understand the concept of Schrodinger Equation. The 

chapter began with understanding of Introduction of Quantum Mechanics and the 

Schrodinger equation and to acquire mathematical skills, require to develop theory of 

quantum mechanics. After completion of this lesson student should have the knowledge of 

fundamentals of Quantum Mechanics. 

 Introduction of Quantum Mechanics and the Schrodinger equation.  

 To acquire mathematical skills, require to develop theory of quantum mechanics 

STRUCTURE: 

1.1 Why QM 

1.2 Inadequacy of Classical Mechanics 

1.3 Schrodinger Equation  

1.4 Continuity Equation or Equation of Continuity or Probability of Current Density 

1.5 Ehrenfest’s Theorem 

1.6 Summary 

1.7 Technical Terms 

1.8 Self Assessment Questions 

1.9 Suggested Readings 

1.1 WHY QM: 

 In 1900, Plank introduced a revolutionary hypothesis known as Plank’s Hypothesis, 

according to which every radiating atom in a solid emits energy only discretely in quanta, the 

energy of an individual quantum being equal to hυ. 

𝐄𝐧 = 𝐧𝐡𝛖 

where n is an integer and h is Plank’s constant = 6.625X10ିଷସJ.sec 

 By the aid of this hypothesis, Plank was able to explain law of distribution of energy 

in the spectrum of black body. This theory was given by Plank in historic paper titled 

“Theory of law of distribution of energy in a normal spectrum” presented before the Berlin 
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Academy of Sciences on Dec 14, 1900. This day, in fact, may be considered as the birthday 

of Quantum Mechanics. 

 After the intension of de Broglie’s hypothesis of matter waves (1924), it develops the 

new type Physics. It is called Quantum Mechanics. 

 The development of Quantum Mechanics is based on the scientists, namely Erwin 

Schrodinger, Werner Heisenberg, Max Born, Paul Dirac etc. Quantum mechanics classifies 

the all limitations of Bohr’s Theory. 

 The inadequacy of Classical mechanics led to the development of Quantum 

Mechanics. 

1.2 INADEQUACY OF CLASSICAL MECHANICS:  

 The development of classical mechanics is based on Newton’s three laws. These laws 

included the concepts of absolute mass, absolute space and absolute time. The classical 

mechanics explains correctly the motion of celestial bodies like planets, stars and 

macroscopic as well as microscopic terrestrial bodies moving with non-relativistic speeds. 

The inadequacies of classical mechanics are  

1) It does not hold in the region of atomics dimensions i.e., it cannot explain the non 

relativistic motion of atoms, photons etc. 

2) It could not explain the stability of atoms. 

3) It could not explain observed spectrum of black body radiations. 

4) It could not explain the origin of discrete spectra of atoms since according to 

classical mechanics the energy changes are always continuous. 

 In spite of this classical mechanics could not explain a large number of observed 

phenomenon’s like Photoelectric Effect, Compton Effect, Raman Effect etc. The inadequacy 

of Classical mechanics led to the development of Quantum Mechanics. 

1.3 SCHRODINGER EQUATION: 

Schrodinger’s Time Independent and Time Dependent Wave Equations 

We know that the total energy is the sum of kinetic and potential energies. 

T = K.E. + P.E. 

Where K.E. = 
௣మ

ଶ୫
 here p is momentum and P.E. = V(r) 

∴ T =
pଶ

2m
 +  V(r) 
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Hermitian Operator                 H =
୮మ

ଶ୫
+ V෡(r) 

We know that                       HΨ = EΨ 

Where Ψ is wave function, H is Hermitian Operator and E is energy. 

By substituting Hamiltonian value H =
୮మ

ଶ୫
+ V෡(r), we get 

൭
pଶ

2m
+ V෡(r)൱ Ψ =  EΨ 

ቆ
ିℏమ∇మ

ଶ୫
+ V෡(r)ቇ Ψ =  EΨ  or  

−ℏଶ∇ଶΨ

2m
+ V෡(r)Ψ = EΨ 

Multiplying by negative sign throughout the equation and then dividing with     

𝛁𝟐𝚿 +
𝟐𝐦

ℏ𝟐
(𝐄 − 𝐕)𝚿 = 𝟎 

This equation is known as Schrodinger Time Independent Wave Equation. 

For a free particle, potential energy is zero i.e., P.E. = 0 then the equation is reduced to 

∇ଶΨ +
2m

ℏଶ EΨ = 0 

We know that                        HΨ = EΨ 

We have Hamiltonian value  H =
୮మ

ଶ୫
+ V෡(r) and Energy E = 𝑖ℏ

డ

డ௧
 

⇒ ቆ
୮మ

ଶ୫
+ V෡(r)ቇ Ψ = iℏ

பΨ

ப୲
                   or 

on replacing momentum p, we have 

ቌ
−ℏ𝟐𝛁𝟐

𝟐𝐦
+ 𝐕෡(𝐫)ቍ 𝚿 = 𝐢ℏ

𝛛𝚿

𝛛𝐭
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here Ψ is a function of (r, t) where r = (x,y,z) and t is time. 

This equation is called Time Dependent Schrodinger Wave Equation. 

1.4  CONTINUITY EQUATION OR EQUATION OF CONTINUITY OR 

PROBABILITY OF CURRENT DENSITY: 

We have Schrodinger wave equation for a free particle. 

     ∇ଶΨ +
ଶ୫

ℏమ EΨ = 0       (for free particle V=0) 

On rearrangement, we have  

∇ଶΨ = −
2m

ℏଶ EΨ 

or                                  −
ℏమ

ଶ୫
∇ଶΨ = EΨ 

or                                  −
ℏమ

ଶ୫
∇ଶΨ = iℏ

பΨ

ப୲
ቂ∵ E =  iℏ

ப

ப୲
ቃ            ….. (1) 

The complex conjugate of eq. (1) is 

−
ℏమ

ଶ୫
∇ଶΨ∗ = −iℏ

ୢΨ∗

ୢ୲
      ….. (2) 

Pre-multiplying eq. (1) with Ψ∗and post multiplying eq. (2) with Ψ on both sides. 

−
ℏమ

ଶ୫
Ψ∗∇ଶΨ = iℏΨ∗ ୢΨ

ୢ୲
                                     ….. (3) 

−
ℏమ

ଶ୫
∇ଶΨ∗Ψ = −iℏ

ୢΨ∗

ୢ୲
Ψ                                     ….. (4)   

from eq. (3) and eq. (4), we can write 

−
ℏଶ

2m
[Ψ∗∇ଶΨ − ∇ଶΨ∗Ψ] = iℏ ቈΨ∗ ∂Ψ

∂t
+

∂Ψ∗

∂t
Ψ቉ 

or           −
ℏమ

ଶ୫
[Ψ∗∇ଶΨ − ∇ଶΨ∗Ψ] = iℏ

ப

ப୲
(Ψ∗Ψ) 
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or                                    
ப

ப୲
(Ψ∗Ψ) = −

ℏ

ଶ୫௜
[Ψ∗∇ଶΨ − ∇ଶΨ∗Ψ] 

𝛛𝐩

𝛛𝐭
+ 𝛁 ⋅ 𝐬 = 𝟎 

Where 𝑝 = Ψ∗Ψ and ∇ ⋅ s = −
ℏ

ଶ୫௜
[Ψ∗∇ଶΨ − ∇ଶΨ∗Ψ] 

This equation is known as Equation of Continuity. Here p is probability of density and s 

is probability of current. 

 If ∇ ⋅ s = 0 then
ப୮

ப୲
= 0. Here p is constant i.e., probability is constant in time and then 

such states are called Stationary States. 

1.5 EHRENFEST’S THEOREM:  

 The theorem states that the average motion of a wave packet agrees with the motion 

of the corresponding classical particle. 

 In simple mechanics  F = −∇V 

   F =
ୢ〈୮〉

ୢ୲
  Where p is linear momentum 

ୢ〈୮〉

ୢ୲
 =  

ୢ

ୢ୲
∫(Ψ∗pΨ) dτ(∵  〈p〉 =  ∫ Ψ∗pΨ  dτ) 

=  
d

dt
න[Ψ∗(−iℏ∇)Ψ]dτ 

 = −iℏ ∫ ቂ
ୢ

ୢ୲
Ψ∗∇Ψ + Ψ∗ ୢ

ୢ୲
(∇Ψ)ቃ dτ 

                                           = ∫ ቂ−iℏ 
ୢΨ∗

ୢ୲
∇Ψ − iℏ Ψ∗∇ 

ୢΨ

ୢ୲
ቃ dτ 

iℏ
ୢΨ

ୢ୲
 = −

ℏమ

ଶ୫
∇ଶΨ +V(r)Ψ 

and it’s complex conjugate is 

−iℏ 
ୢΨ∗

ୢ୲
 = −

ℏమ

ଶ୫
∇ଶΨ∗ +V(r)Ψ∗ 
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⇒
ୢ〈୮〉

ୢ୲
=∫ ቄቂ−

ℏమ

ଶ୫
∇ଶΨ∗ + V(r)Ψ∗ቃ ∇Ψ − Ψ∗∇ ቂ−

ℏమ

ଶ୫
∇ଶΨ + V(r)Ψቃቅ dτ 

           = −
ℏమ

ଶ୫
∫ [∇ଶΨ∗∇Ψ − Ψ∗∇ (∇ଶΨ)]dτ + ∫ [V(r)Ψ∗∇Ψ − Ψ∗∇ V(r)Ψ]dτ 

Taking first term  

−
ℏమ

ଶ୫
∫ [∇ଶΨ∗∇Ψ − Ψ∗∇(∇ଶΨ)]dτ = ∫

ିℏమ

ଶ୫
[∇ଶΨ∗∇Ψ − Ψ∗∇(∇ଶΨ)]dτ 

                                                          = 
ିℏమ

ଶ୫
∫[∇ଶΨ∗∇Ψ − Ψ∗∇(∇ଶΨ)] dτ 

൤න(v∇ଶu − u∇ଶv)dτ = ඵ(u∇v − v∇u)ds൨ [u = Ψ∗; v = ∇Ψ] 

 ⇒
−ℏଶ

2m
ඵ[Ψ∗∇ଶΨ − (∇Ψ)∇Ψ∗]ds 

 For the larger values of Ψ, this integral will be vanished because Ψ is finite. 

∴
d〈p〉

dt
= ∫ [V(r)Ψ∗∇Ψ − Ψ∗∇ (V(r)Ψ)]dτ 

= ∫ [V(r)Ψ∗∇Ψ − Ψ∗∇VΨ − Ψ∗V∇Ψ]dτ 

= න(−Ψ∗∇VΨ) dτ 

⇒
d〈p〉

dt
= 〈−∇V〉 

∴𝐅 = −𝛁𝐕 

Therefore, the quantum mechanical description of average motion of particle is identical with 

the classical description of the particle. It proves the Ehrenfest’s theorem. 

1.6 SUMMARY: 

     In this lesson student will learn how quantum mechanics has been developed and the 

inadequacy of classical mechanics. Subsequently in Quantum Mechanics Schrodinger Wave 

Equation was developed. Student has learned the continuity equation in quantum mechanics 

and he has learned the importance of Ehrenfest theorem. 
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1.7 TECHNICAL TERMS:  

  Quantum mechanics, Schrodinger equation, continuity equation, Ehrenfest theorem. 

1.8 SELF-ASSESSMENT QUESTIONS: 

1) What is the failure of Classical Mechanics? 

2) Derive One Dimensional Schrodinger Wave Equation. 

3) Derive Continuity Equation. 

4) Explain Ehrenfest Theorem. 

1.9 SUGGESTED READINGS: 

1) Eugen Merzbacher, Quantum Mechanics, Wiley.  

2) L I Schiff, Quantum Mechanics (Mc Graw-Hill).  

3) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).  

4) A P Messiah, Quantum Mechanics.  

 

Prof. M. Rami Reddy 



LESSON-2 

ONE-DIMENSIONAL PROBLEMS 

2.0 AIM AND OBJECTIVE: 

The primary goal of this chapter is to understand the concept of One-dimensional problems. 

The chapter began with understanding of admissible wave function, Stationary States, One-

Dimensional Problems, Wells and Barriers, Harmonic Oscillator by Schrodinger Equation. 

After completion of this lesson student should have the knowledge of fundamentals of one-

dimensional problem. 

STRUCTURE: 

2.0 Introduction 

2.1 Admissible Wave Function 

2.2 Stationary States 

2.3 One-Dimensional Problems 

2.4 Wells and Barriers 

2.5 Harmonic Oscillator by Schrodinger Equation 

2.6 Summary 

2.7 Technical Terms 

2.8 Self-Assessment Questions 

2.9 Suggested Readings 

2.0  INTRODUCTION: 

One-dimensional problems in quantum mechanics provide an essential foundation for 

understanding the behavior of quantum systems. Although real-world systems typically exist 

in three-dimensional space, the one-dimensional approximation is often the first step in 

simplifying complex problems. These problems not only give insights into quantum 

mechanics but also help develop the mathematical and conceptual tools used for more 

complicated systems. 

2.1 ADMISSIBLE WAVE FUNCTION: 

 In quantum mechanics, admissible wave functions (also known as physical wave 

functions) are wave functions that satisfy the conditions necessary for describing the state of 
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a quantum system. These conditions ensure that the wave function is physically meaningful 

and mathematically consistent. The key properties of admissible wave functions include: 

1) Normalization: 

 The wave function ψ(x,t) must be normalizable. This means that the total 

probability of finding a particle somewhere in space must be 1. 

 Mathematically, this is expressed as: 

න ψ(𝑥, 𝑡)ଶ

ஶ

ିஶ

𝑑𝑥 = 1 

For a single spatial dimension.  For more than one spatial dimension, the integral is 

over the entire space. 

2) Continuity and Smoothness: 

 The wave function ψ(x,t) should be continuous and smooth (differentiable) where 

possible, especially in regions where the potential is finite. Discontinuities or 

sharp corners in the wave function could imply infinite physical quantities like 

momentum or energy, which are non-physical. 

 At points where the potential has discontinuities (like in the case of delta-function 

potentials), the wave function may be discontinuous, but its derivative should 

remain continuous. 

3) Square-Integrability: 

 The wave function must be square-integrable, ψ(𝑥, 𝑡)ଶmeaning should fall off 

sufficiently fast at infinity so that the integral over all space converges to a finite 

value. This condition ensures the normalizability condition is satisfied. 

4) Boundary Conditions: 

 The wave function should go to zero at infinity for systems confined to a finite 

region of space. For instance, in problems like the infinite potential well, ψ(x)=0 

at the walls of the well. 

 For systems where particles are free to move in infinite space, the wave function 

typically tends to zero as 𝑥 → ±∞. 

5) Hermiticity of Operators: 

 In quantum mechanics, physical observables are represented by Hermitian 

operators. The wave function ψ(x,t)  must be such that the expectation value of 
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any physical observable (like position, momentum, energy, etc.) is well-defined. 

This ensures that the probability distributions derived from the wave function are 

physical and consistent. 

6) Time Dependence: 

 In time-dependent problems, the wave function may be written as a solution to the 

time-dependent Schrödinger equation: 

iℏ
∂ψ(x, t)

∂t
= H෡ψ(x, t) 

WhereH෡  is the Hamiltonian operator. The wave function should evolve according to 

this equation and maintain the probabilistic interpretation. 

7) Physical Interpretation 

 The modulus squared of the wave function ψ(𝑥, 𝑡)ଶ, is interpreted as the 

probability density for finding a particle at position x (or in a region of space) at 

time t. 

 The wave function must not yield negative probabilities, so it must be a complex-

valued function with a well-defined probability interpretation. 

8) Eigen functions of Operators 

 In some cases, wave functions are also eigenfunctions of certain operators. For 

example, in systems like the quantum harmonic oscillator or the hydrogen atom, 

the wave function may be an eigenfunction of the Hamiltonian (energy operator) 

or the momentum operator. 

9) Symmetry Properties 

 The wave function may possess certain symmetries depending on the system, such 

as rotational symmetry in the case of central potentials. These symmetries help 

determine the form of the wave function and can simplify solving the Schrödinger 

equation. 

10) Relativistic Considerations 

 For systems requiring relativistic quantum mechanics (like the Dirac equation), 

the wave function must satisfy the relativistic equation of motion. In these cases, 

the wave function may be represented by spinors (for spin-1/2 particles) or other 

mathematical objects. 
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2.2 STATIONARY STATES: 

A stationary state refers to a quantum state whose probability distribution does not change 

with time. These states are characterized by having a definite energy (associated with an 

energy eigenvalue). In mathematical terms, a stationary state ψ(x,t) can be written as: 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒
ି௜ா௧

ℏൗ  

Here: 

 ψ(x) is the spatial part of the wavefunction (which describes the probability 

distribution of the particle's position). 

 E is the energy eigenvalue associated with the state. 

 ℏ is the reduced Planck's constant. 

 𝑒
ି௜ா௧

ℏൗ  is the time-dependent phase factor. 

The key feature of a stationary state is that while the wavefunction undergoes a phase 

evolution over time (due to the factor 𝑒
ି௜ா

ℏൗ ), the probability density (i.e.,| ψ(x, t)|ଶ) 

remains constant over time. 

Time Evolution and the Schrödinger Equation 

The time-dependent Schrödinger equation governs the behavior of quantum systems. 

For a particle in a potential V(x), it is written as: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = 𝐻෡𝜓(𝑥, 𝑡) 

where 𝐻෡ is the Hamiltonian operator, which represents the total energy of the system. The 

Hamiltonian is typically the sum of the kinetic energy (𝑇෠) and potential energy (𝑉෠ ): 

𝐻෡ = 𝑇෠ +  𝑉෠  

Now, if the wave function ψ(x,t) is in a stationary state, it can be written as: 

𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑒
ି௜ா௧

ℏൗ  

Substituting this into the Schrödinger equation, we get: 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥)𝑒

ି௜ா௧
ℏൗ = 𝐻෡ 𝜓(𝑥)𝑒

ି௜ா௧
ℏൗ  
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The time derivative of the wave function gives: 

𝑖ℏ −
𝑖𝐸

ℏ
 𝜓(𝑥)𝑒

ି௜ா௧
ℏൗ = 𝐻෡ 𝜓(𝑥)𝑒

ି௜ா௧
ℏൗ  

Simplifying: 

𝐸𝜓(𝑥)𝑒
ି௜ா௧

ℏൗ = 𝐻෡ 𝜓(𝑥)𝑒
ି௜ா௧

ℏൗ  

Cancelling the time-dependent phase factor 𝑒 
ି௜ா௧

ℏൗ , we get the time-independent 

Schrödinger equation: 

𝐻෡ 𝜓(𝑥) =  𝐸𝜓(𝑥) 

This equation tells us that the spatial part of the wavefunction ψ(x) is an eigenfunction of the 

Hamiltonian operator  

𝐻෡ with eigenvalue E. The solutions ψ(x)to this equation represent the stationary states, and 

the corresponding eigenvalues E represent the energy levels associated with these states. 

2.3 ONE DIMENSIONAL PROBLEMS: 

One-Dimensional Quantum Mechanics Problem: The Particle in a Box 

A classic one-dimensional problem in quantum mechanics is the Particle in a Box (also 

known as the Infinite Potential Well). This problem serves as a foundational example to 

understand quantum behavior, such as quantized energy levels and wave functions, and is 

often used to introduce the basic principles of quantum mechanics. 

Problem Setup: 

Imagine a particle of mass m confined to a box with infinitely high walls. The particle is free 

to move within the box, but it cannot escape because the potential outside the box is infinitely 

large. 

 The box is a one-dimensional region, say between x=0 and x=L, and outside this 

region, the potential is infinite. 

 Inside the box (between x=0 and x=L), the potential is zero, i.e., V(x)=0. 

Thus, the potential function V(x) is: 

𝑉(𝑥) = ቊቄ
0      0 ≤ 𝑥 ≤ 𝐿

∞                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

This means that the particle is confined to move only within the interval0 ≤ 𝑥 ≤ 𝐿 . 
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Schrödinger Equation for the Problem: 

To solve this problem, we apply the time-independent Schrödinger equation for a particle 

in a potential: 

−
ℏଶ

2𝑚

𝑑ଶψ(x)

𝑑𝑥ଶ
+ 𝑉(𝑥)ψ(x) = Eψ(x) 

Since V(x)=0 inside the box, the equation simplifies to: 

−
ℏଶ

2𝑚

𝑑ଶψ(x)

𝑑𝑥ଶ
= Eψ(x) 

Rearranging: 

𝑑ଶψ(x)

𝑑𝑥ଶ
= −𝑘ଶ ψ(x) 

Where 𝑘 = ට
ଶ௠ா

ℏమ
. This is a second-order differential equation that describes the 

wavefunction ψ(x) inside the box. 

General Solution of the Schrödinger Equation: 

The general solution to the above differential equation is: 

ψ(x)=Asin(kx)+Bcos(kx) 

where A and B are constants to be determined by boundary conditions and k is related to the 

energy of the particle. 

Applying Boundary Conditions: 

Since the particle is confined to the box, the wavefunction must be zero at the boundaries x=0 

and x=L (because the potential is infinite outside the box, the particle cannot exist outside): 

1) At x=0: 

ψ(0)=0 

Substituting into the general solution: 

0=Asin(0)+Bcos(0)  ⟹  B=0 

Therefore, the wavefunction simplifies to: 

ψ(x)=Asin(kx) 
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2) At x=L: 

ψ(L)=0 

Substituting into the wavefunction: 

Asin(kL)=0 

Since A≠0, we must have: 

sin(kL)=0 

This implies that kL=nπ, where n is a positive integer. Thus, the allowed values of k are: 

𝑘௡ =
𝑛𝜋

𝐿
,   𝑛 = 1,2,3 … … 

Quantized Energy Levels: 

The energy of the particle is related to the wave number k by: 

𝐸௡ =
ℏଶ𝑘௡

ଶ

2𝑚
 

Substituting  

𝑘௡ =
௡గ

௅
 gives the quantized energy levels: 

𝐸௡ =
𝑛ଶ𝜋ଶℏଶ

2𝑚𝐿ଶ
       𝑛 = 1,2,3, … … .. 

Thus, the energy levels are discrete (quantized), and the particle can only occupy certain 

energy states, corresponding to the integer values of nnn. 

Wave functions (Eigen Functions): 

The wavefunctions corresponding to these energy levels are: 

ψ௡(𝑥) = ඨ
2

𝐿
𝑠𝑖𝑛

𝑛𝜋𝑥

𝐿
,      𝑛 = 1,2,3 … … .. 

These wave functions describe the probability distribution of the particle's position within the 

box. The probability of finding the particle in a given region is proportional to 

∣ψn(x)∣2|\psin(x)|^2∣ψn(x)∣2. 
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Probability Density: 

The probability density P(x) is the square of the wave function: 

𝑃(𝑥) = |ψ௡(𝑥)|ଶ =
2

𝐿
𝑠𝑖𝑛ଶ

𝑛𝜋𝑥

𝐿
 

This gives the likelihood of finding the particle at position x within the box for a given 

energy level E௡. 

2.4 WELLS AND BARRIERS: 

Quantum Wells: 

A quantum well refers to a region in which a particle is confined within a specific spatial 

region due to a potential that is lower inside the well than outside it. Essentially, it is a "well" 

that traps the particle. Quantum wells are often used to model systems where particles (such 

as electrons or atoms) are constrained to move in a particular region, leading to quantized 

energy levels. 

Types of Quantum Wells: 

 Infinite Quantum Well: In this case, the potential inside the well is zero, and the 

potential outside the well is infinite. A particle inside this well is completely confined 

and cannot escape. The energy levels are quantized, meaning that only certain discrete 

energies are allowed. 

Potential Profile: 

𝑉(𝑥) = ቊቄ
0      0 ≤ 𝑥 ≤ 𝐿

∞                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

The solutions to the Schrödinger equation inside the well are standing waves, and the 

energy eigenvalues are quantized as: 

𝐸௡ =
𝑛ଶ𝜋ଶℏଶ

2𝑚𝐿ଶ
       𝑛 = 1,2,3, … … .. 

Where n is a positive integer. 

 Finite Quantum Well: In a finite quantum well, the potential inside the well is still 

lower than outside, but the potential outside the well is not infinite. This means the 

particle has a non-zero probability of being found outside the well, though the 

probability decreases exponentially beyond the well's boundaries. 
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Potential Profile: 

𝑉(𝑥) = ൜
−𝑉଴,       0 ≤ 𝑥 ≤ 𝐿

0,                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

Where 𝑉଴,    is the depth of the well and L is the width of the well. 

For a finite well, the energy levels are still quantized, but there are also bound states 

and leaky states. The solutions to the Schrödinger equation lead to both discrete 

bound state energies (for which the particle is confined) and continuous energies (for 

which the particle is free to escape). 

Bound States in Quantum Wells: 

 Bound states occur when the particle’s energy is less than the potential outside the 

well (i.e., E<0in the case of a negative potential). 

 In these states, the wavefunction is localized inside the well, and the particle has 

discrete energy levels. 

Tunnelling Through a Well (Finite Potential Well): 

 In a finite quantum well, the particle may tunnel through the walls if its energy is 

higher than the potential at the boundaries of the well but still less than the potential 

outside. This is known as quantum tunnelling. 

Quantum Barriers: 

A quantum barrier is a region where the potential energy of the system is higher than the 

energy of the particle. Particles encountering a quantum barrier may reflect or tunnel through 

the barrier, depending on their energy. 

Types of Quantum Barriers: 

 Infinite Barrier: An infinite potential barrier is one where the potential is infinitely 

large, making it impossible for the particle to exist in the region beyond the barrier. 

Potential Profile: 

𝑉(𝑥) = ൜
0           𝑓𝑜𝑟 𝑥 < 0 𝑜𝑟 𝑥 > 𝐿

∞,             𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝐿
  

This is similar to the infinite potential well described earlier, but with the barrier 

preventing the particle from existing within the region where the potential is infinite. 

This scenario is typically used to model particle confinement. 
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 Finite Barrier: A finite potential barrier, unlike the infinite barrier, has a finite 

height, allowing a particle to potentially pass through it via quantum tunneling. 

Potential Profile: 

𝑉(𝑥) = ൜
0            𝑥 < 0 𝑜𝑟 𝑥 > 𝐿

−𝑉଴,      ,              0 ≤ 𝑥 ≤ 𝐿
  

Where 𝑉଴,      is the height of the barrier and L is the width of the barrier. 

If a particle with energy E (where E<𝑉଴,      ) approaches a finite barrier, it may be 

reflected, but there is a non-zero probability that it will tunnel through the barrier 

(this phenomenon is known as quantum tunneling). 

Tunneling and Transmission Coefficient 

The probability of a particle tunneling through a finite barrier depends on: 

 The energy of the particle. 

 The width and height of the barrier. 

The transmission coefficient TTT describes the probability that a particle will tunnel 

through a barrier. For a rectangular potential barrier, the transmission coefficient is given by: 

𝑇 = 𝑒ିଶஓ୐ 

where: 

 γ=ට
ଶ௠(௏బିா

ℏమ
is the decay constant. 

 L is the width of the barrier. 

 𝑉଴,     is the height of the barrier. 

 E is the energy of the particle. 

For high barriers and narrow widths, the transmission probability decreases exponentially, 

meaning that tunneling becomes less probable. 

Reflection and Transmission: 

 If the particle's energy is less than the barrier height E<𝑉଴,, it will experience partial 

reflection and partial transmission. 
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 The particle’s wavefunction on the other side of the barrier decays exponentially, but 

there is still a small non-zero probability of finding the particle beyond the barrier. 

This is known as quantum tunneling. 

2.5 HARMONIC OSCILLATOR: 

A particle undergoing simple harmonic motion in one-dimension is called one-dimensional 

harmonic oscillator. 

In Simple harmonic motion the restoring force is proportional to displacement. 

F = −kx, 

Where k is positive constant-force constant. 

 The one dimensional Schrodinger time independent equation is  

பమஏ

ப୶మ
+

ଶ୫

ℏమ
(E − V)Ψ = 0                                       ……. (1) 

The potential energy of the Oscillator is V =
ଵ

ଶ
kxଶ. Substitute in eq. (1) 

∂ଶΨ

∂xଶ
+

2m

ℏଶ
൬E −

1

2
kxଶ൰ Ψ = 0 

பమஏ

ப୶మ
+ ቀ

ଶ୫୉

ℏమ
−

୩୫୶మ

ℏమ
ቁ Ψ = 0             ……. (2) 

For our convenience, let ξ = αx ⇒  x =
ஞ

஑
 

⇒
dξ

dx
= α 

∴
dΨ

dx
=

dΨ

dξ
⋅

dξ

dx
 

dΨ

dx
= α ⋅

dΨ

dξ
 

dଶΨ

dxଶ
= α ⋅

d

dx
൬

dΨ

dξ
൰ 

= α ⋅
dଶΨ

dξଶ
⋅

dΨ

dξ
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dଶΨ

dxଶ
= αଶ

dଶΨ

dξଶ
൤∵

dξ

dx
= α൨ 

Substitute the above in equation (2) 

αଶ
dଶΨ

dξଶ
+ ቆ

2mE

ℏଶ
−

kmxଶ

ℏଶ
ቇ Ψ = 0 

ୢమஏ

ୢஞమ
+ ቀ

ଶ୫୉

ℏమ஑మ
−

୫୩ஞమ

ℏమ஑ర
ቁ Ψ = 0                  ……. (3) 

then let 𝜆 =
ଶ୫

ℏమ஑మ
 and 

୩୫

ℏమ஑ర
= 1     ⇒  αସ =

୩୫

ℏమ
 

⇒  αଶ = ൬
mk

ℏଶ
൰

భ

మ

 

Substitute in equation (3) 

ୢమஏ

ୢஞమ
+ (λ − ξଶ)Ψ = 0         …… (4) 

then let Ψ = H୬(ξ)eି
ಖ

మ 

⇒  
dଶΨ

dξଶ
= H୬

ᇱ (ξ)eି
ಖమ

మ + H୬(ξ)eି
ಖమ

మ (−ξ) 

⇒  
dଶΨ

dξଶ
= H୬

" (ξ)eି
ಖమ

మ + H୬
ᇱ (ξ)eି

ಖమ

మ (−ξ) + H୬
ᇱ (ξ)eି

ಖమ

మ (−ξ) − H୬(ξ)eି
ಖమ

మ

+                         H୬(ξ)(−ξ)eି
ಖమ

మ (−ξ) 

⇒  
dଶΨ

dξଶ
= H୬

" (ξ)eି
ಖమ

మ − 2ξH୬
ᇱ (ξ)eି

ಖమ

మ (−ξ) + H୬(ξ)eି
ಖమ

మ (ξଶ − 1) 

Substitute the above in equation (4) 

H୬
" (ξ)eି

ಖమ

మ − 2ξH୬
ᇱ (ξ)eି

ಖమ

మ (−ξ) + H୬(ξ)eି
ಖమ

మ (ξଶ − 1) + (λ − ξଶ)H୬(ξ)eି
ಖ

మ = 0 

⇒ H୬
" (ξ)eି

ಖమ

మ − 2ξH୬
ᇱ (ξ)eି

ಖమ

మ (−ξ) + (λ − 1)H୬(ξ)eି
ಖ

మ = 0 
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⇒ H୬
" (ξ) − 2ξH୬

ᇱ (ξ) + (λ − 1)H୬(ξ) = 0 

This equation is identical to Hermites polynomial, then  

dଶy

dxଶ
− 2x

dy

dx
+ 2ny = 0 

then 2n = λ − 1   ⇒ λ = 1 + 2n 

But we know that λ =
ଶ୫

ℏమ஑మ
= 2n + 1 ⇒  αଶ = ቀ

୫୩

ℏమ
ቁ

భ

మ 

⇒  αଶ = ቆ
mଶωଶ

ℏଶ
ቇ

భ

మ

[∵ k = mω] 

αଶ =
mω

ℏ
 

                                                                then λ =
ଶ୫୉

ℏమ஑మ
= 2n + 1 

=
2mE

ℏଶ ୫ன

ℏ

= 2n + 1 

λ =
2E

ℏω
= 2n + 1 

⇒ E =
(2n + 1)ℏω

2
 

⇒ E = ൬n +
1

2
൰ ℏω 

where n =  0,1,2,3, … (Eigen Values) 

This equation indicates that the energy levels of harmonic oscillator are equally spaced. 

Significance of Zero-Point Energy: 

For ground state, n =  0. 

𝐄𝟎 =
𝟏

𝟐
ℏ𝛚 
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This equation is called Zero-point energy. 

Even if all the vibrations of the atom are possible at 0° Kelvin, still some energy is associated 

the oscillator, that energy is called zero-point energy. 

Eigen Functions of Harmonic Oscillator: 

The Eigen function Ψ can be set equal to the product of polynomial H୬(ξ) and factor eି
ಖమ

మ  

i.e.,                

Ψ = N୬H୬(ξ)eି
ಖమ

మ             ……. (5) 

න Ψ୬
∗Ψ୬dτ = N୫N୬ න H୫(ξ)H୬(ξ)eି

ಖమ

మ
dξ

α
 

=
N୫N୬

α
න H୫(ξ)H୬(ξ)eି

ಖమ

మ dξ 

where ∫ H୫(ξ)H୬(ξ)eି
ಖమ

మ dξ = 2୬n! √π 

∴ න Ψ୬
∗Ψ୬dτ =

N୫N୬

α
2୬n! √π 

න Ψ୬
∗Ψ୬dτ =

Nଶ

α
2୬n! √π = 1      for m = n 

⇒ N୬ = ൬
α

2୬n! √π
൰

భ

మ
 

substitute above equation in equation (5) 

Ψ = ൬
α

2୬n! √π
൰

భ

మ
H୬(ξ)eି

ಖమ

మ  

Zero Point Energy and Eigen Values: 

                Let   a| k〉 =  |p 〉   and    〈 𝑘|𝑎ற   = 〈 𝑝|  

ൻ𝑘ห𝑎ற𝑎ห𝑘ൿ = ⟨𝑝|𝑝⟩          p= Normal of the Ket 

Then    a| k〉 = 0   and   〈 0|𝑎ற   = 0 
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ൻ0ห𝑎ற𝑎ห0ൿ = ർ0ฬ
𝐻

ℏω
−

1

2
ฬ0඀ ≥ 0 ∴  H| 0〉 =  E଴| 0〉 

                                = ቀ
୉బ

ℏன
−

ଵ

ଶ
ቁ ⟨0|0⟩ 

                              = 0 

⇒
E଴

ℏω
−

1

2
= 0 ∴  ൤E଴ =

ℏω

2
൨ 

This is called ground state zero point energy. 

∴ ർ𝑘ฬ𝐻 +
ℏω

2
ฬ𝑘඀ ≥ 0 

E୩ = ൬𝑘 +
1

2
൰ ℏω 

Hence wave function of the ground state is like this 

Then we have    a| 0〉 = 0 

   But we know that      a= ට
ఓఠ

ଶℏ
ቂ𝑞 +

௜௣

ఓఠ
ቃ 

 ට
𝜇𝜔

2ℏ
൤𝑞 +

𝑖𝑝

𝜇𝜔
൨ቤ  0〉 = 0 

 ට
𝜇𝜔

2ℏ
൤𝑞 +

𝑖𝑝

𝜇𝜔
൨ቤ  0〉 = 0 

 ൤𝑞 +
𝑖𝑝

𝜇𝜔
൨ฬ  0〉 = 0 

𝑞Ψ଴ +
௜

ఓఠ
ቀ−𝑖ℏ

డ

డ௤
Ψ଴ቁ = 0 

𝑞Ψ଴ +
ℏ

ఓఠ

డஏబ

డ௤
 = 0 

𝑞Ψ଴ = −
ℏ

𝜇𝜔

𝜕Ψ଴

𝜕𝑞
 

𝑞𝜕𝑞 = −
ℏ

𝜇𝜔

𝜕Ψ଴

Ψ଴
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 Apply integration on both sides  

𝑞ଶ

2
= −

ℏ

𝜇𝜔
log Ψ଴ 

log Ψ଴ = −
𝑞ଶ𝜇𝜔

2ℏ
 

Ψ଴ = 𝑒ି
೜మഋഘ

మℏ ×Constant 

∴ Ψ଴(𝑞) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 H௡(𝑞)𝑒
ቀି

ഋഘ

మℏ
ቁ௤మ

    We can write 

∴ Ψ(𝑞) = ൬
𝛼

2௡𝑛! √𝜋
൰

భ

మ
H௡(𝑞)𝑒

ቀି
ഋഘ

మℏ
ቁ௤మ

 

2.6 SUMMARY:   

  Student will know about the Quantum Mechanics and Schrodinger Wave equation. 

The student will solve the physics problems by using Schrodinger Wave Equation. 

2.7 TECHNICAL TERMS: 

  Admissible wave functions, Stationary states, One-dimensional problems, wells and 

  barriers, Quantum Mechanics, Harmonic Oscillator.  

2.8 SELF-ASSESSMENT QUESTIONS: 

1) Explain about the one dimensional problems. 

2) Solve the problem of Harmonic Oscillator using Schrodinger Wave equation. 

3) Briefly explain about the Admissible wave functions. 

2.9 SUGGESTED READINGS: 

1) L I Schiff, Quantum Mechanics (Mc Graw-Hill). 

2) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley). 

3) A P Messiah, Quantum Mechanics. 

4) Mathews and Venkatesan Quantum Mechanics. 

5) Fundamentals of quantum Mechanics, Statistical Mechanics & Solid State Physics 

by S.P.Kuila, Books and Allied, Kolkata. 
 

Prof. M. Rami Reddy 



LESSON-3 

LINEAR VECTOR SPACES IN QUANTUM MECHANICS 

3.0 AIM AND OBJECTIVE: 

 The primary goal of this chapter is to understand the concept ofLinear vector spaces in 
Quantum mechanics. The chapter began with understanding Vectors and operators, Change 
of Basis, Dirac Ket-Bra notations, Eigen value problem for operators. After completion of 
this lesson student should have the knowledge of fundamentals of Linear vector spaces in 
Quantum mechanics. 

STRUCTURE: 

3.1 Introduction 

3.2 Vectors and Operators 

3.3 Change of Basis 

3.4 Dirac Ket-Branotations 

3.5 Eigen Value Problem for Operators 

3.6 Summary 

3.7 Technical Terms 

3.8 Self-Assessment Questions 

3.9 Suggested Readings 

3.1 INTRODUCTION: 

Quantum Mechanics was developed by eminent scientists who had strong foundation in both 
physics and mathematics. Modern approach treats quantum mechanics as a new subject with 
its own set of postulates. The development of the theory is based on mathematical techniques 
using operators. Operator algebra follows the general laws of commutation, association and 
distribution with respect to addition. But multiplication is not necessarily commutative, as is 
with matrices. It is of interest to understand operators. 

3.2 VECTORS AND OPERATORS: 

 An operator is a rule by which one wave function is changed to another. 

A෡Ψ = ϕ 
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 Hereܣመ = operator,Ψ = wave function,߶ = New wave function 

Ex:   A෡ = ப
ப୶
Ψ = xଶ 

ப
ப୶

xଶ = 2x 

1) Linear Operator:  

Any operator  ܣመ linear operator is for any two arbitrary wave function wave function Ψ௔(ݔ) 

,Ψ௕(ݔ) we get 

A෡[Ψୟ(x) + Ψୠ(x)] = A෡Ψୟ(x) + A෡Ψୠ(x) 

A෡[λΨୟ(x)] = λA෡Ψୟ(x) 

Where ߣ is a constant which may or may not be a complex number and Ψ௔(ݔ) ,Ψ௕(ݔ) are 
arbitrary wave functions. Here ܣመ is said to be an anti linear operator then it satisfies the 
following relations.                  

A෡[λΨୟ(x)] = λ∗A෡Ψୟ(x) 

2) Identity Operator:  

An operator which leaves energy vector of a given space unchanged is known as identity 
operator.            

IመΨ =  ΨIመ = Ψ 

Where ܫመ is identity operator. 

3) Null or Zero operator:  

When an operator is applied on one wave function. Then after operator the function becomes 
zero. Then such on operator is called null operator. 

0෠Ψ ==  Ψ0෠ = 0          

Where 0෠ is null operator. 

4) Unitary Operator: 

When the inverse and ad-joint of an operator are identical. Then the operator is known as 
unitary operator. If  ෡ܷ is unitary operator then 
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U෡ற = = U෡ିଵ 

ܷ෡ܷற = ෡ܷற  U = I           and          UU෡ିଵ = U෡ିଵU =I 

Again for two state function  Ψ and ϕ 

⟨ϕ|ߖ⟩ = ൻϕห ෡ܷற U หΨൿ = ⟨Uϕ|ܷߖ⟩ 

5) Inverse Operator:  

Consider two wave function Ψଵ(x) and Ψଶ(x). Let the operator ܣመ real’s than                       

Ψଵ(x) =  መΨଶ(x) = Ψଵ(x)(1)ܣ    መΨଶ(x)      andܣ

If there exist another operator ܤ෠  which reverse the action of ܣመଵ such that  

 ෠Ψ(x) = Ψଶ(x)(2)ܤ

From (1)ܽ݊݀(2) the operator ܤ෠=A෡ିଵ is called inverse operator ofܣመ. The operator ܣመ satisfy 

the following condition then it is called inverse operator. 

 መA෡ற = Iܣ

6) Adjoint Operator or Hermitian Operator: 

 Let ܣመ is an arbitrary operator can define another linear operatorA෡ற.    

∫Ψ∗A෡ற߶ ݀߬ =∫ ൫ܣመΨ൯
∗
߶ ݀߬ ൫ΨA෡றϕ൯ = ܣመΨ߶(1) 

When equation Ψଵ and ߶ are two arbitrary function if ܣመ Hermitian we can write   

 መΨ߶--------- (2)ܣ = ߶መΨܣ

By comparing eq. (1) & (2), we get  

 መܣ= መାܣ

i.e., ܣመ is Hermitian operator. 
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7) Projection Operator:  

Consider a ‘N’ decimal space formed by a set of ‘N’ mutually orthogonal unit vectors, If each 
other.  “<i>” of an orthogonal we introduce a projection operator ‘ܲ ෠௜’. 

             The effect of ‘ ෠ܲ௜’ on arbitrary vector <Ψ> space is to produce a new vector whose 
direction is along the basis vector “|<i>”. 

Hilbert space defined by a complete set of  

Eigen kets |Ψ௜〉′ݏ(݅ = 1,2,3,4 … ) 

|Ψ〉 = ∑ ܿ௜ஶ
௜ୀଵ |Ψ௜〉Where ܿ௜ = ⟨Ψ୧|ߖ⟩ 

|Ψ〉 = ∑ ⟨Ψ୧|ߖ⟩ஶ
௜ୀଵ |Ψ௜〉 = ∑ |Ψ௜〉⟨Ψ୧|ߖ⟩ஶ

௜ୀଵ    If   |Ψ〉 = |Ψ௜〉 

|Ψ௜〉 = ෍|Ψ௜〉⟨Ψ୧|Ψ௜⟩
ஶ

௜ୀଵ

= ෍ ௜ܲ|Ψ௜〉
ஶ

௜ୀଵ

 

Where ௜ܲ = |Ψ௜〉〈Ψ௜| ௜ܲ is called projection operator. 

෍ ௜ܲ = 1
ஶ

௜ୀଵ

 

Properties of Projection Operator: 

(݅). పܲ෡
ଶ = పܲ෡  

పܲ෡
ଶ|Ψ〉 = పܲ෡൫ పܲ෡|Ψ〉൯ = పܲ෡|Ψ௜〉⟨Ψ୧|Ψ⟩ = |Ψ௜〉⟨Ψ୧|Ψ୧⟩⟨Ψ୧|Ψ⟩ 

                                       =|Ψ௜〉⟨Ψ୧|Ψ⟩ = పܲ෡|Ψ〉 ∵ ⟨Ψ୧|Ψ୧⟩ = 1 

పܲ෡
ଶ = పܲ෡  

(݅݅). Projection operator ෠ܲ௜ is Hermitian  

                       For any two arbitrary Kets|݉〉 ܽ݊݀ |݊〉, we have  

ൻ݊ห ෠ܲ௜ห݉ൿ = ⟨n|i⟩⟨i|m⟩ = ⟨m|i⟩∗⟨i|n⟩∗ = ൻ݉ห ෠ܲ௜ห݊ൿ
∗

= ൻ ෠ܲ௜nหmൿ 
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8) Momentum Operator:  

Momentum operator ̂݌ is represented as “ ℏ
௜
∇” in terms of components 

෠ܲ௫ = ℏ
௜
డ
డ௫

 ; ෠ܲ௬ = ℏ
௜
డ
డ௬

; ෠ܲ௭ = ℏ
௜
డ
డ௭

 . 

9) Product of Two Unitary Operators: 

If  ܣመ and ܤ෠  are two unitary operators. 

Then, 

෠ܤመܣ ) ෠ܤመܣ ) (   +መܣ+෠ܤ෠ܤመܣ= +( 

.] +መܣ መ Iܣ =
.
 [෠+ = Iܤ෠ܤ.

 +መܣመܣ=

= I 

෠ܤመܣ ) ෠ܤመܣ )+(  ෠ܤመܣ+መܣ+෠ܤ  = (   

෠ܤ ෠+ Iܤ   =    [.
.
 [ መ+ = Iܣመܣ  .

෠ܤ +෠ܤ  =  

= I 

.
.
෠ܤመܣ )  . ෠ܤመܣ ) (  ෠ܤመܣ )=  +(  ෠ܤመܣ )+(   ) = I 

 Thus ܣመ and ܤ෠  are two unitary operators, then their product is also a unitary operator. 

10) Parity Operator:  

It is defined as ߨොΨ(x) = Ψ(x). That is when the wave function Ψ(x)is operated by parity 

operator it gets reflected n its co-ordinates.  

(i)   ߨො[Ψଵ(x) + Ψଶ(x)] =  Ψଵ(−x) + Ψଶ(−x) =ߨොΨଵ(x) +  ොΨଶ(x)ߨ

(ii)  ߨො[Ψ(ݔ)] = ൫Ψ(−ݔ)൯ = ൫ߨොΨ(ݔ)൯   Hence ߨො is a linear operator. 
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(iii) The Eigen value of ߨො operator is ߨොΨ = ߣΨ 

 (1)   (ݔ)ଶΨߣ =൯(ݔ)Ψߣ൫ߣ = (ݔ)ොΨߨߣ = (ݔ)Ψߣොߨ = (ݔ)ොΨߨොߨ = (ݔ)ොଶΨߨ

 (2)   (ݔ)Ψ = (ݔ−)ොΨߨ = (ݔ)ොΨߨොߨ = (ݔ)ොଶΨߨ

  From (1)&(2)ߣଶ =1   then ߣ = ±1 

 The Eigen function corresponding ߣ = +1 are called Even functions represents by Ψ௘ 

Ψ௘(ݔ) = Ψ௘(−ݔ) 

The Eigen function corresponding ߣ = −1 are called Odd functions represents by Ψ଴ 

Ψ௢(ݔ) = −Ψ௢(−ݔ) 

11) Addition and Subtraction Operator: 

The Addition and Subtraction of operator gives new operators. The sum and difference of 
operator as defined by 

൫ܣመ ± (ݔ)መ fܣ =(ݔ)෠൯fܤ ± ෠ܤ  f(ݔ) 

EX:-ܣመ = logୣ,ܤ෠  = ௗ
ௗ௫

,  f(ݔ) = ݔଶ 

ቀlogୣ ± ௗ
ௗ௫
ቁ ଶݔଶ =  logୣݔ ± ௗ

ௗ௫
 ଶݔ

                                                   = 2 logୣ x ± 2x 

                                                   =  2( logୣ x ± x) 

12) Multiplication Operator:  

Multiplication of two operators means operation by the two operators of after the order of 

operation being from right to left. 

෠ܤ is first operated by (ݔ)݂ Means that the function (ݔ)෠݂ܤመܣ  operator gives a new function 

g(ݔ) and g(ݔ) is operated by the operator ܣመ&ܤ෠  finally gives the function h(ݔ) 

(ݔ)෠݂ܤመܣ = መܣ ቀܤ෠݂(ݔ)ቁ = ൯(ݔ)መ൫݃ܣ = h(ݔ) 
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EX:-ܣመ = ෠ܤଶݔ4 = డ
డ௫
(ݔ)݂ =aݔଷ 

(ݔ)෠݂ܤመܣ = ଶݔ4 డ
డ௫

(aݔଷ) = 4ݔଶ(3aݔଶ) = 12 a ݔସ 

3.3 CHANGE OF BASIS:  

We must now consider the transformation from one representation from one representation to 
another in the general space. Along with the old unprimed basis we consider a new primed 
basis. The new basis vectors may be expressed in terms of the old ones. 

Ψ෡ ′௞ = ∑ Ψ෡ ௜ ௜ܵ௞௜                (1) 

  S =ቌ
ଵܵଵ

ଵܵଵ

ଵܵଵ

ଵܵଵ

… ଵܵଵ
… ଵܵଵ

. . … … . .
ଵܵଵ ଵܵଵ … ଵܵଵ

ቍ 

Two such basis changes, S and R, performed in this order, is equivalent to a single one whose 

matrix is simply the product matrix RS. To obtain the new components of an arbitrary vector 

we write  

Ψ௔ = ∑ ܽ௜Ψ෡ ௜ =௜ ∑ ܽ′௞Ψ෡
′
௞௞           (2) 

Substituting Eq. (1) we get ܽ௜ = ∑ ܽ′௞ ௜ܵ௞௜       (3) 

൮

ܽଵ
ܽଶ.
.
ܽ௡

൲ = ܵ

⎝

⎜
⎛
ܽ′ଵ
ܽ′ଶ.

.
ܽ′௡⎠

⎟
⎞

 

       We must also determine the connection between the matrices A and ܣ′representing the 
operator A in the old and new representations. 

AΨ෡ ′௝ = ∑ Ψ෡ ′௜ܣ′௜௝௜ = ∑ ∑ Ψ෡௞ܵ௞௜ܣ′௜௝௞௜   (4) 

But on the other hand 

AΨ෡ ′௝ = ∑ܣ Ψ෡ ௟ ௟ܵ௝ =௟ ∑ ∑ Ψ෡௞ܣ௞௟ ௟ܵ௜௞௟    (5) 

Comparing Eq. (4) and (5) we get ܵܣ′ =  ܵܣ

′ܣ = ܵିଵܵܣ 
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 We say that ܣ′ is obtained from A by a similarity transformation. 

3.4 DIRAC’S BRA AND KET NOTATIONS: 

Consider the product 〈ߣΨ௔Ψ௕〉= ߣ∗〈Ψ௔Ψ௕〉 

          The scalar product is said to be dependent on the prefatory in antilinear fashion. This 
type of symmetry can be aviated. If we take two factors belonging to two different vectors 
spaces each space is linear in itself related to each other in an anti linear manner. 

Thus we have a space of post factor vector and a space of three factor vectors. The 
connection between the dual spaces is given by  

⟨Ψ௔|Ψ௕⟩ or ⟨ܽ|ܾ⟩ = ߜ௔௕ 

⟨Ψ௔|Ψ௕⟩ = ∫Ψ∗
௔Ψ௕ ݀߬ 

Then in this ‘< ′ is called bra and ‘> ′ is called ket. The operator ߙ is said to be linear 

 ifܣ|ܽ = 〈ܣ|ߙ〉  or ⟨ܣ|ߙ|ܤ⟩ = ∫Ψ∗
஻ߙΨ஺ ݀߬ 

Properties of Bra and Ket Notation: 

1) Operation on a Ket vector from the left with an operator ܣመ produces another Ket vector  

〈መ|Ψܣ = หΨ′〉and the operation on a bra vector from the right with an operator ܣመ produces 

another bra vector   〈Ψ|ܣመ = 〈Ψ′ห 

2) The Kets may be multiplied by complex numbers and may be added to give other  

Ketsi.eܽଵ|ܳ〉 + ܽଶ|ܴ〉 = |ܵ〉 

The sum of two Bras is defined by the condition that its scalar product with any Ket vector 

|ܳ〉 is the sum of the scalar product of 〈R| and 〈S| with |ܳ〉. In notation 

{〈R| +  〈S|}|ܳ〉 = ⟨ܴ|ܳ⟩ + ⟨ܵ|ܳ⟩ 

3) The expectation value of an operator ܣመ in the state Ψ can be written in this notation as 

መΨܣ∗Ψ∫ = 〈መܣ〉 ݀߬ = ∫Ψ∗Ψ′ ݀߬ = ൻΨหΨ′ൿ= ൻΨหܣመหΨൿ 

4)  The Eigen value problem for quantum mechanical state in these notations. If an operator 
  .መoperates on a Ket|Ψ〉 from leftܣ
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 〈Ψ|ߣ =〈መ|Ψܣ

5) The set of Eigenkets{|Ψଵ〉, |Ψଶ〉, … ….  |Ψ௡〉, … … |Ψ௠〉} will be an orthonormal set of 

eigenkets if       ⟨Ψ௡|Ψ௠⟩ = ߜ௡௠n,m = 1,2,3,……… 

A bra and a Ket vector will be called orthogonal if their scalar product is zero.  

6) If we have a complete set of eigenkets|Ψ௜〉’s, (݅ = 1,2,3, … ), then in analogy with the 

complete set of eigen-functions, we can express any arbitrary Ket |Ψ〉 as 

|Ψ〉= ∑ ܿ௜∞
௜ୀଵ |Ψ௜〉     Where ܿ௜ = ⟨Ψ௜|Ψ⟩ 

3.5 THE EIGEN VALUE PROBLEM FOR OPERATORS: 

A ketหA′〉 is called an Eigen vector, or Eigen ket, of the operator A if  

〈′หAܣ = A′หA′〉 

An Eigen value enclosed in a ket|ܣ〉, as in หA′〉, denotes the Eigen ket belonging to that Eigen 

value. Assume that ′ܭ − 1′ of the Eigen vectors are linearly independent but that the ܭ௧௛ 

Eigen vector depends linearly on these. 

If  ܣΨ௝ = A′Ψ୨Ψ௞ = ∑ ௜Ψ௜ߣ
௞ିଵ
௜ୀଵ  

Ψ௝ܣ = A′
୩Ψ୨ = A′

୩∑λ୧Ψ୧ = ∑λ୧A′
୧Ψ୧ 

Hence A′
୩ = A′

୧ 

 Let A be a Hermitian operator  

〈′หAܣ = A′หA′〉---(1)  and    ܣหA′′〉 = A′′หA′′〉--- (2) 

 Multiplication Eq(1)  on left with a bra, 

ൻA′′หܣหA′ൿ = A′ൻA′′หA′ൿ--- (3) 
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 From the Eq(2), by the Hermitian property A, 

〈A′′หܣ = A′′∗〈A′′ห 

Hence 

ൻA′′หܣหA′ൿ = A′′∗ൻA′′หA′ൿ --- (4) 

Combing Eq(3) and (4) 

൫A′ − A′′∗൯ൻA′′หA′ൿ = 0  ---      (5) 

If we letA′′ = A′, and recall that ൻA′หA′ൿ > 0, It follows that  

A′ = A′∗ = ܴ݈݁ܽ 

All Eigen values of a Hermitian operator are real. Eq(5) can be written as  

(A′ − A′′)ൻA′′หA′ൿ = 0 

Eigen values are orthogonal    ൻA′′หA′ൿ = 0     we shall usually assume that  

ൻA′′หA′ൿ =  ′′୅′୅ߜ

3.6 SUMMARY: 

  In this chapter change of basis and different operators were discussed. Addition, 

subtraction and multiplication of operators is also discussed. Dirac notation is also explained. 

Eigen value problem for operators is also discussed. 

3.7 TECHNICAL TERMS:  

  Vectors and Operators, Change of Basis, Dirac’s Bra and Ketnotations, Eigen Value. 

3.7 SELF-ASSESSMENT QUESTIONS: 

1) How do you change the basis? 

2) Explain about the Vectors and Operators? 

3) Briefly explain about the Dirac’s bra and Ket notations? 

4) What is the Eigen value problem for operators? 
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3.9 SUGGESTED READINGS: 

1) J J Sakural, Modem Quantum Mechanics.  

2) Mathews and Venkatesan Quantum Mechanics.  

3) Quantum Mechanics” by R.D. Ratna Raju.  

4) Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State 
Physics by S.P. Kuila, Books and Allied, Kolkata.  

 

Prof. M. Rami Reddy 



LESSON-4 

LINEAR VECTOR SPACES AND OPERATORS 

4.0 AIM AND OBJECTIVE: 

The primary goal of this chapter is to understand the concept of Linear vector spaces in 
Quantum mechanics. The chapter began with understanding ofThe continuous spectrum, 
Application to Wave Mechanics in One Dimension, Hermitian operator,  Unitary operator, 
Projection operatorAfter completion of this lesson student should have the knowledge of 
fundamentals of Linear vector spaces in Quantum mechanics.To develop understanding of 
postulates of quantum mechanics and to learn to apply them to solve some quantum 
mechanical systems To offer systematic methodology for the application of approximation 
methods to solve complicated quantum mechanical systems  

STRUCTURE: 

4.1  Introduction 

4.2  The Continuous Spectrum 

4.3  Application to Wave Mechanics in One Dimension 

4.4  Hermitian Operator 

4.5  Unitary Operator 

4.6  Projection Operator 

4.7  Summary 

4.8  Technical Terms 

4.9  Self-Assessment Questions 

4.10  Suggested Readings 

4.1 INTRODUCTION: 

Quantum Mechanics was developed by eminent scientists who had strong foundation in both 
physics and mathematics. Modern approach treats quantum mechanics as a new subject with 
its own set of postulates. The development of the theory is based on mathematical techniques 
using operators. Operator algebra follows the general laws of commutation, association and 
distribution with respect to addition. But multiplication is not necessarily commutative, as is 
with matrices. 
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4.2 THE CONTINUOUS SPECTRUM: 

 The spectrum of Eigen values consists of discrete points and continuous portion. The 
Eigen vectors corresponding to discrete Eigen values can be normalized to unity. In the 
continuous portion of the spectrum, we assume that the Eigen vector is a continuous function 
of the Eigen value. 

〈′หAܣ = A′หA′〉  Where A′ is real. 

ൻA′หA′′ൿ = ′A)ߜ − A′′) In analogy with     

ൻA′หA′′ൿ =  .୅′୅′′ For the discrete Eigen valuesߜ

These normalizations all the formulas for the discrete and continuous cases are very 
similar, except that integrals in the latter replace sums in the former. An arbitrary vector can 
be written as  

|a〉 = ෍ห݇ ′〉ൻ݇ ′หܽൿ + ∫ ห݇ ′′〉
௞′

݀݇ ′′ ൻ݇ ′′หܽൿ 

          The discrete and the integral over the continuous Eigen values of the complete set of 
commuting observables symbolized by k. 

The Eigen value problem of an operator A, assuming a purely continuous set of basis 
vectors. The equation  

〈′หAܣ = A′หA′〉Becomes ∫ ห݇ܣ ′〉 ݀݇ ′ ൻ݇ ′หܣ′ൿ = ∫′ܣ ห݇ ′〉 ݀݇ ′ ൻ݇ ′หܣ′ൿ         or  

∫ ൻ݇ ′′หܣห݇ ′ൿ݀݇ ′ൻ݇ ′หܣ′ൿ = A′ൻ݇ ′′หܣ′ൿ 

4.3 APPLICATION TO WAVE MECHANICS INONE DIMENSION:  

The wave mechanics of a point particle, for simplicity restricted to one dimension. The state 
of the system is determined by a ket|a〉. Since we can always measure the particle’s position 
along the x-axis, there must be a Hermitian operator x corresponding to this observable. 
Hence, the Eigen values of x, denoted byݔ ′, form a continuum. The corresponding Eigen 

vectors are denoted by หݔ ′〉 

〈′หxݔ = x′หx′〉 

With the assumed normalization  

ൻx′′หx′ൿ = ′x)ߜ − x′′) 
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The vector |a〉 can be expanded as  

|a〉 = ∫ หݔ ′〉 ݔ݀ ′ ൻݔ ′หܽൿ 

   If we write  

Ψ௔(ݔ ′) = ൻݔ ′หܽൿ 

 The connection between state vectors |a〉 and the wave function Ψ௔(ݔ ′) is established 

ݔ ′is the continuously variable label of the components Ψ௔(ݔ ′) of state vector Ψ௔ = |a〉 in an 

infinitely dimensional abstract space. The Eigen vectors of the position operator x, is called 

coordinate representation, and we might say that wave mechanics is quantum mechanics 

conducted in the coordinate representation. The scalar product of two states becomes  

⟨ܾ|ܽ⟩ = ∬ ൻܾหx′′ൿ݀ݔ ′′ൻx′′หx′ൿ݀ݔ ′ൻx′หܽൿ 

⟨ܾ|ܽ⟩ = ∬ ൻܾหx′′ൿ݀ݔ ′′x)ߜ′′ − x′)݀ݔ ′ൻx′หܽൿ 

⟨ܾ|ܽ⟩ = න Ψ௕
ݔ)∗ ′)Ψ௔(ݔ ′)

ା∞

ି∞

ݔ݀ ′ 

The Orthogonality of two states is expressed by the equation  

⟨ܾ|ܽ⟩ = න Ψ௕
ݔ)∗ ′)Ψ௔(ݔ ′)

ା∞

ି∞

ݔ݀ ′ = 0 

4.4 HERMITIAN OPERATORS: 

 Hermitian operators are very important in the development of Quantum Mechanics.  

Therefore, it is necessary to understand the essential features of this class of operators. 

If, for any two arbitrary eigenfunctions  φm (x)  and φn(x), 

 φm
*


A φndx  =   (


A †φm)*φndx     (1) 

then 


A †  is called the adjoint of  the operator 


A .  If 


A = 


A †, then the operator 


A  is called 

the self-adjoint or Hermitian operator.  Thus a Hermitian Operator is defined according to the 

following equation: 
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 φm
*


A φndx  =   (


A φm)*φndx     (2) 

Properties: 

i) The eigen functions of a Hermitian operator are real. 

ii) Any two eigen functions which belong to two different eigen values of a Hermitian  

operator are orthogonal. 

Proof: 

In the case of operator 


A , consider two eigen functions   φm and φn  with eigen values am and 
an respectively. 



A φm= am φm       (3) 



A φn= an φn       (4) 

Multiplying equation-4 with φm
* and equation-13 by φn

* from left and integrating, 

 φm
*


A φndx  =  an  φm
*φndx    (5) 

 φn
*


A φmdx  =  am  φn
*φm dx    (6) 

Taking the complex conjugation of equation-6, we have 

 (


A φm)*φndx  =  am
*  φm

*φn dx    (7) 

Using the Hermitian property of operator 


A (equation-12), LHS of equations-5 and 7 are 

equal; hence the RHS must also be equal.  Therefore,  

an  φm
*φndx  =  am

*  φm
*φn dx    (8) 

If we consider the case n = m, the above equation becomes 

am  φm
*φmdx  =  am

*  φm
*φm dx    (9) 
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From the above equations, it is obvious that   am = am
* and hence am = real. This proves the 

first property that the eigen functions of a Hermitian Operator are real. 

Using   am
* = am   and rewriting equation-18, we have 

(an – am)  φm
*φn dx  =  0     (10) 

For two different eigenvalues, i.e., for (an – am)   ≠  0, we have 

 φm
*φn dx  =  0 

This is the condition for orthogonality of φm and φn and this proves the second property.  

Note: 

(i)  In the case of matrix operators, a matrix (M) is said to be Hermitian, if it is equal to its 

transpose conjugate (M†):        (M†) = M.  

(ii) M is said to be unitary, if          M† = M -1, where M -1 is the inverse of M  

(iii) M is said to be orthogonal, if   MT = M -1, where MT is the transpose of M. 

4.5 UNITARY OPERATOR: 

When the inverse and ad-joint of an operator are identical. Then the operator is known as 

unitary operator. If  ෡ܷ is unitary operator then 

U෡ற = = U෡ିଵ 

ܷ෡ܷற = ෡ܷற  U = I           and          UU෡ିଵ = U෡ିଵU =I 

Again for two state function  Ψ and ϕ 

⟨ϕ|ߖ⟩ = ൻϕห ෡ܷற U หΨൿ = ⟨Uϕ|ܷߖ⟩ 

4.6 PROJECTION OPERATOR: 

Consider a ‘N’ decimal space formed by a set of ‘N’ mutually orthogonal unit vectors, If each 

other.  “<i>” of an orthogonal we introduce a projection operator ‘ܲ ෠௜’. 
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The effect of ‘ ෠ܲ௜’ on arbitrary vector <Ψ> space is to produce a new vector whose direction is 

along the basis vector “|<i>”. 

Hilbert space defined by a complete set of Eigen kets|Ψ௜〉′ݏ(݅ = 1,2,3,4 … ) 

|Ψ〉 = ∑ ܿ௜∞
௜ୀଵ |Ψ௜〉Where ܿ௜ = ⟨Ψ୧|ߖ⟩ 

|Ψ〉 = ∑ ⟨Ψ୧|ߖ⟩∞
௜ୀଵ |Ψ௜〉 = ∑ |Ψ௜〉⟨Ψ୧|ߖ⟩∞

௜ୀଵ    If    |Ψ〉 = |Ψ௜〉 

|Ψ௜〉 = ෍|Ψ௜〉⟨Ψ୧|Ψ௜⟩
∞

௜ୀଵ

= ෍ ௜ܲ|Ψ௜〉
∞

௜ୀଵ

 

  Where ௜ܲ = |Ψ௜〉〈Ψ௜| ௜ܲIs called projection operator. 

෍ ௜ܲ = 1
∞

௜ୀଵ

 

Properties of Projection Operator: 

(݅). పܲ෡
ଶ = పܲ෡  

పܲ෡
ଶ|Ψ〉 = పܲ෡൫ పܲ෡|Ψ〉൯ = పܲ෡|Ψ௜〉⟨Ψ୧|Ψ⟩ = |Ψ௜〉⟨Ψ୧|Ψ୧⟩⟨Ψ୧|Ψ⟩ 

                                       =|Ψ௜〉⟨Ψ୧|Ψ⟩ = పܲ෡|Ψ〉 ∵ ⟨Ψ୧|Ψ୧⟩ = 1 

పܲ෡
ଶ = పܲ෡  

(݅݅). Projection operator ෠ܲ௜ is Hermitian  

                       For any two arbitrary Kets|݉〉 ܽ݊݀ |݊〉, we have  

ൻ݊ห ෠ܲ௜ห݉ൿ = ⟨n|i⟩⟨i|m⟩ = ⟨m|i⟩∗⟨i|n⟩∗ = ൻ݉ห ෠ܲ௜ห݊ൿ
∗

= ൻ ෠ܲ௜nหmൿ 

4.7 SUMMARY:  

In this chapter continuous spectrum, application in wave mechanics and some of the 

operators are discussed. 

4.8  TECHNICAL TERMS:  

  Continuous spectrum, Wave mechanics, Hermitian, Unitary, Projection operators. 
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4.9  SELF-ASSESSMENT QUESTIONS 

1) Describe about the continuous spectrum. 

2) Write the application in Wave mechanics. 

3) Briefly explain about the projection operators. 

4.10  SUGGESTED READINGS: 

1) Eugen Merzbacher, Quantum Mechanics, Wiley.  

2) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).  

3) J JSakural, Modem Quantum Mechanics.  

4) Mathews and Venkatesan Quantum Mechanics.  

5) Quantum Mechanics” by R.D. Ratna Raju.  

 

Prof. M. Rami Reddy 



LESSON-5 

LINEAR VECTOR SPACES AND OPERATORS 

5.0 AIM AND OBJECTIVE: 

          The primary goal of this chapter is to understand the concept of Linear vector spaces in 
Quantum mechanics. The chapter began with understanding Positive operators, Change of 
orthonormal basis, Uncertainity Relation. After completion of this lesson student should have 
the knowledge of fundamentals of Linear vector spaces in Quantum mechanics. To develop 
understanding of postulates of quantum mechanics and to learn to apply them to solve some 
quantum mechanical systems. To offer systematic methodology for the application of 
approximation methods to solve complicated quantum mechanical systems  

STRUCTURE: 

5.1  Introduction 

5.2  Positive Operators 

5.3 Change of Orthonormal Basis 

5.4 Orthogonalization Procedure 

5.5 Uncertainity Relation. 

5.6  Summary 

5.7  Technical Terms 

5.8  Self-Assessment Questions 

5.9  Suggested Readings 

5.1 INTRODUCTION: 

Quantum Mechanics was developed by eminent scientists who had strong foundation in both 
physics and mathematics. Modern approach treats quantum mechanics as a new subject with 
its own set of postulates. The development of the theory is based on mathematical techniques 
using operators. Operator algebra follows the general laws of commutation, association and 
distribution with respect to addition. But multiplication is not necessarily commutative, as is 
with matrices.  It is of interest to understand operators 

5.2 POSITIVE OPERATORS: 

A positive operator is a special type of self-adjoint operator that has the following property: 
for any vector ∣ψ⟩ in the Hilbert space, the expectation value of the operator is non-negative: 
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⟨ψ∣ܣመ∣ψ⟩≥0 

Mathematically, we say that ܣመ is positive if: 

 መ≥0ܣ

This condition means that the operator ܣመ has no negative eigen values, i.e., its spectrum (the 
set of its eigen values) is non-negative. 

In other words, for a self-adjoint operator ܣመ, the operator is positive if all of its eigen values λ 
satisfy: 

λ≥0 

Mathematical Definition of Positive Operators: 

An operator ܣመ is positive if it satisfies the following condition for all states ∣ψ⟩ in the Hilbert 
space: 

⟨ψ∣ܣመ∣ψ⟩≥0 

If ܣመ is positive, it can be shown that: 

 The operator is self-adjoint. 

 The operator’s eigen values are non-negative (i.e., λ≥0). 

One way to express this mathematically is that for a self-adjoint operator ܣመ, it is positive if all 
of its eigen values are non-negative. In terms of the spectral decomposition of the operator: 

መ=λ|ψλ⟩⟨ψλܣ |d λ 

Where λ represents the eigen values, the operator ܣመ  is positive if λ≥0 for all eigen values. 

5.3 CHANGE OF ORTHONORMAL BASIS: 

Suppose we have two different orthonormal bases in the Hilbert space: 

 One basis {∣ψ௜ ⟩} for the original representation. 

 Another basis {∣ϕ௜⟩} for the new representation. 

To perform a change of orthonormal basis, we express the new basis vectors {∣ϕ௜⟩} in terms 

of the original basis vectors {∣ψ௜ ⟩}. This is done by finding a unitary transformation matrix 

UUU that relates the two bases. 
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Unitary Transformation 

The key idea is that a change of basis can be represented by a unitary transformation. A 
unitary operator U satisfies: 

U†U=UU†=I 

Where U† is the Hermitian conjugate (or adjoint) of U, and I is the identity operator. 

Let {∣ϕ௜⟩} be the new basis vectors, and we want to express these in terms of the original 

basis {∣ψ௜ ⟩}. The relationship is: 

∣ ϕ௜⟩ = ௜ܷ௝∣ψ௝  ⟩ 

Where ௜ܷ௝   are the components of the unitary transformation matrix U. 

The inverse relationship, where we express the original basis vectors {∣ψ௜ ⟩} in terms of the 

new basis {∣ϕ௜⟩}, is given by: 

∣ψ௜ ⟩= U †௜௝∣ ϕ௝⟩ 

or equivalently, U† is the matrix corresponding to the inverse of the unitary transformation. 

5.4 ORTHOGONALIZATION PROCEDURE 

In quantum mechanics, orthogonalization is an essential process for obtaining an 
orthonormal set of basis vectors from a set of linearly independent vectors. This procedure is 
crucial because many quantum mechanical calculations, such as those involving wave 
functions, operators, and measurements, are easier to perform in an orthonormal basis. The 
most common method for orthogonalizing a set of vectors is Gram-Schmidt 
orthogonalization. 

Here’s a detailed breakdown of the orthogonalization procedure in the context of quantum 
mechanics: 

Orthonormal Basis: 

Before diving into the procedure, let’s clarify the concepts of orthogonal and orthonormal 
sets: 

 Orthogonal Vectors: A set of vectors ∣ψ௜ ⟩ is orthogonal if the inner product of any 

two distinct vectors is zero: 

⟨ψ௜ ∣ψ௝  ⟩=0       for i≠j 
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 Orthonormal Vectors: A set of vectors ∣ψ௜ ⟩ is orthonormal if it is orthogonal and 

every vector has unit length: 

⟨ψ௜ ∣ψ௝  ⟩=1 

In quantum mechanics, states are typically represented as vectors in a Hilbert space, and the 
orthonormal basis plays an important role in expanding and manipulating quantum states. 

Properties of the Orthonormalization Procedure: 

 Preservation of Linear Independence: The Gram-Schmidt procedure takes a 
linearly independent set and transforms it into an orthonormal set. The vectors remain 
linearly independent because the process only involves subtraction of projections, 
which does not introduce any linear dependence. 

 Normalization: Each vector is normalized after the orthogonalization step, ensuring 
that the final set is orthonormal, meaning that the vectors are both orthogonal and 
have unit length. 

 Inner Product Preservation: The inner product between two vectors  

 ∣ψ௜ ⟩ and ∣ψ௝ ⟩in the resulting orthonormal set will be: 

∣⟨ψ௜ ∣ψ௝  ௜௝ߜ=⟨ 

Where  ߜ௜௝  is the Kronecker delta. 

5.5 UNCERTAINTY RELATION: 

Suppose that ܣመܽ݊݀ܤ෠ are Hermitian operators ܣመற = ෠றܤ&መܣ =  is a real number. The ߣ ෠andܤ

mean value of the product of the operators and its adjoint is never negative. i.e.  

〈൫ܣመ + መܣ෠൯൫ܤߣ݅ + ෠൯ܤߣ݅
ற〉 ≥ 0 

〈൫ܣመ + መܣ෠൯൫ܤߣ݅ − 〈෠൯ܤߣ݅ ≥ 0 or 

(ߣ)݂ = ଶߣ〈෠ଶܤ〉 + 〈መଶܣ〉 − ෠ܤመܣ〉ߣ݅ − 〈መܣ෠ܤ ≥ 0 

     Since ݂(ߣ) is real, 〈ܣመܤ෠ −   መ〉 is purely imaginary. To determine the minimum value ofܣ෠ܤ

which makes ௗ௙ ߣ We must take that value of ,(ߣ)݂
ௗఒ

 equal to zero. 
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ௗ௙
ௗఒ

ߣ〈෠ଶܤ〉2 =  − ෠ܤመܣ〉݅ − 〈መܣ෠ܤ = 0 

 The minimum value of ߣ is given by  

௠௜௡ߣ =
෠ܤመܣ〉 − 〈መܣ෠ܤ

〈෠ଶܤ〉
݅
2 

௠௜௡[(ߣ)݂] = 〈෠ଶܤ〉 + 〈መଶܣ〉 ቄ〈஺
෠஻෠ି஻෠஺෠〉
〈஻෠మ〉

௜
ଶ
ቅ
ଶ
− ෠ܤመܣ〉݅ − 〈መܣ෠ܤ ቄ〈஺

෠஻෠ି஻෠஺෠〉
〈஻෠మ〉

௜
ଶ
ቅ ≥ 0 

௠௜௡[(ߣ)݂] = 〈መଶܣ〉 + ଵ
ସ

{〈஺෠஻෠ି஻෠஺෠〉}మ

〈஻෠మ〉
≥ 0   we get 

〈෠ଶܤ〉〈መଶܣ〉 ≥ − ଵ
ସ
൛〈ܣመܤ෠ − መ〉ൟܣ෠ܤ

ଶ
       (1) 

Heisenberg uncertainty relations-Which is valid for two canonically conjugate observables 

෠ܤመܽ݊݀ܣ  such that ൣܣመ,ܤ෠൧ = ݅ℏ. We define uncertainties ∆ܤ∆݀݊ܽܣ to be the r.m.s. 

መܣ∆ = ቄ〈൫ܣመ − ൯〈መܣ〉
ଶ〉ቅ

భ
మ 

൫∆ܣመ൯
ଶ

=  〈൫ܣመ − ൯〈መܣ〉
ଶ〉 = 〈መଶܣ〉 −  ଶ〈መܣ〉

෠ܤ∆ = ቄ〈൫ܤ෠ − ൯〈෠ܤ〉
ଶ〉ቅ

భ
మ 

൫∆ܤ෠൯
ଶ

=  〈൫ܤ෠ − ൯〈෠ܤ〉
ଶ〉 = 〈෠ଶܤ〉 −  ଶ〈෠ܤ〉

From Eq.(1)〈∆ܣመଶ〉〈∆ܤ෠ଶ〉 ≥ − ଵ
ସ
൛〈∆ܣመ∆ܤ෠ − መ〉ൟܣ∆෠ܤ∆

ଶ
 

〈෠ଶܤ∆〉〈መଶܣ∆〉 ≥ −
1
4
൛〈ൣ∆ܣመ,∆ܤ෠൧〉ൟ

ଶ
 

Reduced to     

൫∆ܣመ൯൫∆ܤ෠൯ ≥
݅
2
൫〈ൣܣመ,ܤ෠൧〉൯ 

 We know that ൣܣመ,ܤ෠൧ = ݅ℏ 
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(ܤ∆)(ܣ∆) ≥
ℏ
2 

This is the Heisenberg uncertainty relation. 

5.6 SUMMARY:  

In this chapter about the Positive operators, change of orthonormal basis, orthogonalization 
procedure and Uncertainty relation is discussed. 

5.7 TECHNICAL TERMS:  

  Positive operators, Change of orthonormal basis, uncertainty relation.  

5.8 SELF-ASSESSMENT QUESTIONS: 

1) What is Positive operator? Explain in brief. 

2) How do you change Orthonormal basis? 

3) What is the Orthogonalization procedure? 

4) What is uncertainty relation? Explain.   

5.9 SUGGESTED READINGS: 

1) Eugen Merzbacher, Quantum Mechanics, Wiley.  

2) L I Schiff, Quantum Mechanics (Mc Graw-Hill).  

3) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).  

4) A P Messiah, Quantum Mechanics.  

5) J J Sakural, Modem Quantum Mechanics.  

6) Mathews and Venkatesan Quantum Mechanics.  

7) Quantum Mechanics” by R.D. Ratna Raju.  

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-6 

ANGULAR MOMENTUM 

6.0 AIM ABD OBJECTIVE: 

The primary goal of this chapter is to understand the concept of Angular momentum. The 

chapter began with understanding of communication relations of angular momentum 

operator, angular momentum in spherical polar coordinates. After completing this chapter, 

the student will understand the complete idea about angular momentum. 

STRUCTURE: 

6.1 Introduction of Angular Momentum 

6.2 Communication Relations for Angular Momentum Operator 

6.3 Angular Momentum in Spherical Polar Coordinates 

6.4 Summary 

6.5 Technical Terms 

6.6 Self Assessment Questions 

6.7 Suggested Readings 

6.1 INTRODUCTION OF ANGULAR MOMENTUM: 

 Angular momentum (which is described as an operator) plays a much importance role 
in quantum mechanics than in classical mechanics (where it is described as a dynamical 
variable). This is probably due to greater importance of periodic motions in quantum 
mechanics. A periodic motion can be understood as a motion in a closed orbit, which 
involves angular momentum. The existence of the intrinsic angular momentum (spin angular 
momentum) could also be another reason and another most importance reason is that the 
angular momentum is quantized which is not the case with the linear momentum.  

  Whenever a conservation law holds good for a physical quantum system, the 
Hamiltonian of the system is invariant under the corresponding group of transformations. The 
converse of this statement is not true as even if the system has a Hamiltonian, which is 
invariant under a group of transformations, there may not be a corresponding conservation 
law. Wigner showed that all symmetry transformations of quantum mechanical states can be 
chosen so as to correspond to either unitary orantiunitary operators. It is unitary 
transformations; it has other consequences which may be tested by the experiments.    

 The present chapter is devoted to symmetries with respect to rotations, which is 
reflected in the angular momentum vector operator (not an ordinary vector as in classical 
mechanics) has been defined by the commutation rules for its components, the orbital angular 
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momentum and spin angular momentum of particle have been constructed , their eigen values 
and eigen functions have been obtained and the connection between rotations and angular 
momentum has been established. 

This entire unit is divided in to five parts:  

i) Deals with the preliminaries of the angular momentum, commutator algebra etc.  

ii) The eigen value problem of orbital angular momentum is described in detail;  

iii) In this the spin angular momentum, the pauli spin matrices and their properties have 

been discussed;  

iv) In this lesson the emphasize is given to the eigen value problem of total angular 

momentum J.  

v) The last part of the unit consist of the addition of angular momenta associated with 

different physical systems and related numerical problems 

6.2 COMMUNICATION RELATIONS FOR ANGULAR MOMENTUM 

 OPERATOR: 

1) Commutation Algebra of Angular Momentum Operator: 

(i) With position co-ordinates: 

[L୶, x] = ൣyP୸ − zP୷, x൧ 

= [yP୸, x] − ൣzP୷, x൧ 

= y[P୸, x] + [y, x]P୸ − zൣP୷, x൧ − [z, x]P୷ 

= 0 

[L୶, y] = ൣyP୸ − zP୷, y൧ 

= [yP୸, y] − ൣzP୷, y൧ 

= y[P୸, y] + [y, y]P୸ − zൣP୷, y൧ − [z, y]P୷ 

= 𝑖ℏz 

[L୶, z] = ൣyP୸ − zP୷, z൧ 
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= [yP୸, z] − ൣzP୷, z൧ 

= y[P୸, z] + [y, z]P୸ − zൣP୷, z൧ − [z, z]P୷ 

= −𝑖ℏy 

[L୶, x] = 0; [L୶, y] = 𝑖ℏz;  [L୶, z] = −𝑖ℏy 

Similarly, 

ൣL୷, x൧ = −𝑖ℏz; ൣL୷, y൧ = 0; ൣL୷, z൧ = 𝑖ℏx 

[L୸, x] = 𝑖ℏy; [L୸, y] = −𝑖ℏx; [L୸, z] = 0; 

ii) With position co-ordinates: 

[L୶, P୶] = ൣyP୸ − zP୷, P୶൧ 

= [yP୸, P୶] − ൣzP୷, P୶൧ 

= y[P୸, P୶] + [y, P୶]P୸ −  zൣP୷, P୶൧ − [z, P୶]P୷ 

= 0 

ൣL୶, P୷൧ = ൣyP୸ − zP୷, P୷൧ 

= ൣyP୸, P୷൧ − ൣzP୷, P୷൧ 

= yൣP୸, P୷൧ + ൣy, P୷൧P୸ −  zൣP୷, P୷൧ − ൣz, P୷൧P୷ 

= 𝑖ℏP୸ 

[L୶, P୸] = ൣyP୸ − zP୷, P୸൧ 

= [yP୸, P୸] − ൣzP୷, P୸൧ 

= y[P୸, P୸] + [y, P୸]P୸ − zൣP୷, P୸൧ −  [z, P୸]P୷ 

= −𝑖ℏP୷ 
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[L୶, P୶] = 0; ൣL୶, P୷൧ = 𝑖ℏP୸; [L୶, P୸] = −𝑖ℏP୷ 

Similarly,  

ൣL୷, P୶൧ = −𝑖ℏP୸;  ൣL୷, P୷൧ = 0; ൣL୷, P୸൧ = 𝑖ℏP୶ 

[L୸, P୶] = 𝑖ℏP୷;  ൣL୸, P୷൧ = −𝑖ℏP୶; [L୸, P୸] = 0 

2) Commutation Relations with Angular Momentum Co-ordinates: 

[L୶, L୶] = 0; 

ൣL୶, L୷൧ = ൣyP୸ − zP୷, L୷൧ 

= ൣyP୸, L୷൧ − ൣzP୷, L୷൧ 

= yൣP୸, L୷൧ + ൣy, L୷൧P୸ −  zൣP୷, L୷൧ − ൣz, L୷൧P୷ 

= y(−𝑖ℏ)P୶ + 0 − z(0)— 𝑖ℏxP୷ 

= ൫xP୷ − yP୶൯𝑖ℏ 

ൣL୶, L୷൧ = 𝑖ℏL୸ 

Similarly 

ൣL୷, L୸൧ = 𝑖ℏL୶ 

[L୸, L୶] = 𝑖ℏL୷ 

3)  Lሬ⃗ × Lሬ⃗ = ቮ
𝑖 𝑗 𝑘

L୶ L୷ L୸

L୶ L୷ L୸

ቮ 

= ı⃗൫L୷L୸ − L୸L୷൯ + ȷ⃗(L୸L୶ − L୶L୸) + kሬ⃗ ൫L୶L୷ − L୷L୶൯ 

= ı⃗ൣL୷, L୸൧ + ȷ⃗[L୸, L୶] + kሬ⃗ ൣL୶, L୷൧ 

= 𝑖ℏL୶ ı⃗ + 𝑖ℏL୷ ȷ⃗ + 𝑖ℏL୸kሬ⃗  
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= 𝑖ℏ൫ı⃗L୶ + ȷ⃗L୷ + kሬ⃗ L୸൯ 

= 𝑖ℏLሬ⃗  

Lሬ⃗ × Lሬ⃗ = 𝑖ℏLሬ⃗  

Finally, 

4) [Lଶ, L୸] = ൣL୶
ଶ + L୷

ଶ + L୸
ଶ , L୸൧ 

= [L୶
ଶ , L୸] + ൣL୷

ଶ , L୸൧ + [L୸
ଶ , L୸] 

= [L୶L୶, L୸] + ൣL୷L୷, L୸൧ 

= L୶[L୶, L୸] + [L୶, L୸]L୶ + L୷ൣL୷, L୸൧ + ൣL୷, L୸൧L୷ 

= L୶൫−𝑖ℏL୷൯ + ൫−𝑖ℏL୷൯L୶ + L୷(𝑖ℏL୶) + (𝑖ℏL୶)L୷ 

= −𝑖ℏL୶L୷ − 𝑖ℏL୶L୷ + 𝑖ℏL୶L୷ + 𝑖ℏL୶L୷ 

[Lଶ, L୸] = 0 

Similarly  

[Lଶ, L୶] = 0 

ൣLଶ, L୷൧ = 0 

6.3 ANGULAR MOMENTUM IN SPHERICAL POLAR COORDINATES: 

Orbital angular momentumof aparticle is defined in Classical Mechanics as  

Lሬ⃗ = r⃗ × pሬ⃗  

where r⃗ = xı⃗ + yȷ⃗ + zkሬ⃗  is the position co-ordinate or position vector of the particle from the 

origin. 

The vector pሬ⃗ = p୶ ı⃗ + p୷ ȷ⃗ + p୸kሬ⃗   is the momentum operator of the particle and 

Lሬ⃗ = L୶ ı⃗ + L୷ ȷ⃗ + L୸k ሬሬ⃗ is the orbital angular momentum vector. 
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∵ Lሬ⃗ = r⃗ × pሬ⃗  the direction of Lሬ⃗  is perpendicular to both r⃗ and pሬ⃗ . 

Lሬ⃗ = ቮ
𝑖 𝑗 𝑘
x y z

p୶ p୷ p୸

ቮ 

Lሬ⃗ = L୶ ı⃗ + L୷ ȷ⃗ + L୸kሬ⃗ = ൫yp୸ − zp୷൯ı⃗ + (zp୶ − xp୸)ȷ⃗ + ൫xp୷ − yp୶൯kሬ⃗  

Therefore 

L୶ = ൫yp୸ − zp୷൯ =  −iℏ ൬y
∂

∂z
− z

∂

∂y
൰ L୷ = (zp୶ − xp୸) =  −iℏ ൬z

∂

∂x
− x

∂

∂z
൰ 

L୸ = ൫xp୷ − yp୶൯ =  −iℏ ൬x
∂

∂y
− y

∂

∂x
൰ 

The components of orbital angular momentum in spherical polar co-ordinates (r, θ, φ) 

L୶ =  −𝑖ℏ ൬−sinφ
∂

∂θ
− cosφ cotθ

∂

∂φ
൰ 

L୷ =  −𝑖ℏ ൬−cosφ
∂

∂θ
− sinφ cotθ

∂

∂φ
൰ 

L୸ =  −𝑖ℏ
∂

∂φ
 

and Lଶ = L୶
ଶ + L୷

ଶ + L୸
ଶ 

= −ℏଶ ቈ
1

sinθ

∂

∂θ
൬sinθ

∂

∂θ
൰ +

1

sinଶθ

∂ଶ

∂φଶ቉ 

6.4 SUMMARY OF THE LESSON:  

 The angular momentum definition and its three components are given in detail. The 

three components of angular momentum are also described in spherical polar coordinates. 

The commutation relations of angular momentum with the position operators, with the 

components of the linear momentum are worked out. The values of the commutator between 

angular momentumcomponents in pairs have also been obtained and it is also shown that the 

commutator [L2, Li]=0 for any value of i.  
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6.5 TECHNICAL TERMS: 

 Angular Momentum, Communication Relations for Angular Momentum Operator, 

 Angular Momentum in Spherical Polar Coordinates. 

6.6 SELF ASSESSMENTS: 

1) Explain the communication relations for angular momentum 

2) Explain the Angular momentum in spherical polar coordinates 

6.7 SUGGESTED READINGS: 

1) A Textbook of Quantum Mechanics-Mathews P M and Venkatesan K (Tata Mc 

Graw Hill Publication Co. Ltd., N. Delhi). 

2) Quantum Mechanics-Merzbacher E (John Wiley & Sons, New York). 

3) Introduction to Quantum Mechanics-Mathews P T (Mc Graw Hill Book Co., New 

York). 

4) Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi,1986. 

 

 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-7 

EIGEN VALUE PROBLEM AND EIGEN VALUE FUNCTION 

7.0 AIM AND OBJECTIVE: 

The primary goal of this chapter is to understand the concept of Eigen value problem and 

Eigen value functions. The chapter began with understanding of Eigen value problem for 

𝐿௭𝑎𝑛𝑑𝐿ଶoperators Eigen value and eigen function of rigid rotator and Hydrogen atom. After 

completing this chapter, the student will understand the Eigen value problem and Eigen value 

functions. 

STRUCTURE: 

7.1 Introduction 

7.2  Eigen Value Problem for 𝑳𝒛, 𝑳𝟐𝑳ା 𝒂𝒏𝒅 𝑳ିOperators  

7.3  Eigen Value and Eigen Function of Rigid Rotator and Hydrogen Atom 

7.5  Summary 

7.6  Technical Terms 

7.7  Self Assessment Questions 

7.8  Suggested Readings 

7.1 INTRODUCTION: 

In linear algebra, Eigen values and Eigen vectors are fundamental concepts that arise from 

the study of linear transformations. These concepts are important in various fields, including 

physics, computer science, engineering, and economics, as they help understand the behavior 

of linear systems and matrices. 

7.2 EIGEN VALUE PROBLEM FOR 𝑳𝒛 , 𝑳𝟐𝑳ା 𝒂𝒏𝒅 𝑳ିOPERATORS: 

Problem of L z 

Consider  

Lz= xpy-ypx 

= 















x

y
y

xi
     

-----------(1) 

yyy

r

ry 





















 





...     -----------(2) 
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Similarly 

 
xxx

r

rx 





















 





...    ----------- (3)    

In spherical polar coordinates  

      x = r sinθ cos ; 

   y = r sinθsin;  

     z  = r cosθ 

  r= 222 zyx  ;    

 Tan = y/x;   

Tanθ= 22 yx  /z 

r

y

y

r





;                          

22

2

2

2
sec.

yxz

y

y 



 

 

  Tan = y/x                                       

222sec yxz

y

y 








     ----------- (4) 




2sec

1

xy





  

Similarly 

 

222 .sec yxz

x

x 








  ;   




22 secx

y

x







  ;     
r

x

x

r





 ; ----------- (5) 

Substituting (4) in (2), we get    

x
y


=
 












.
sec

.
..sec

.
2222 x

x

yxz

xy

r

xy

r
 ----------- (6) 

and 
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 y.
 
















.
2sec2

2

222sec
.

x

y

yxz

xy

rr

xy

x
  ----------- (7) 

Eigen value problem and Eigen value function 

then eqn (1) becomes 

Lz= -iħ 














x
y

y
x  

   = -iħ 









 22

2

2 secsec

1

x

y




 

     = -i ħ 









2

2

1
x

y

 


.
sec

1
2

 

     = -iħ













2

2
2 1sec

x

y  

  Lz= -iħ



 

Eigen value and Eigen function of Lz  

Let the operator Lz acts on the  , gives the eigen value m. 

Lz  m  

 -iħ 





 d

m
 

i
m 

 = o exp 





 m

i


 

  is the eigen function of  Lz 

In one complete rotation  changes to ( +2θ) or n complete revolutions. It will be  

( n 2 ). During this process, the wave function remains unchanged. 
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i.e.,       n
im

n  2exp(2 0 


 

From this 


mn
 is an integer, if n=1, 



mmn
  in one revolution; So on can take only inter 

times   values.  

 Problem of L2 

L2  =L2
x+L2

y+L2
z 

     Consider                   Lx =  y pz- z p y 

=  -i 














y
z

z
y  

L2
x   =   - 2 















y
z

z
y 















y
z

z
y  

                              L2
x   = - 2 




























z
z

y
y

zy
yz

y
z

z
y

2

2

2
2

2

2
2 2  

Similarly 

L2
 y   = - 2






































z
z

x
x

xz
zx

z
x

x
z

2

2

2
2

2

2
2 2  

                              L2
z    =       - 2 



























x
x

y
y

yx
xy

y
x

x
y

2

2

2
2

2

2
2 2  

Then                                                       

                                              L2           =    222
zyx LLL   

                                    =       











































xz

zx
zy

yz
yx

xy
z

z
y

y
x

x
z

yx
y

zx
x

zy
222

2

2
22

2

2
22

2

2
22 222222  
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                                               =  - 2 






















r

r
r

rr 22  

                                            = 2 















r

r
r

rr 2
2

2
222  

                  but   the value of Laplacian operator 2 in terms of spherical polar coordinates is given  by 

2

2

2222

2

2

2

sin

1
sin

sin

11




 































rrr

r
rr

 

                     or     r2  
2

2

222222

2
2

sin

1
sin

sin

1
.

2




 

























rrrr

r

rr

r
 

              Hence,             L2     = 


























2

2

2

2

sin

1
sin

sin

1





  

                      Let Y m
l   , is the eigen function for the operator L 2 then L 2 Y=c Y is the eigen value 

equation. Then 



























2

2

2

2

sin

1
sin

sin

1





YY

  +c Y=0 

                            Let  Y lm   ,    =      

                    is the solution of the above equation. By applying variable and separable method, the 

above equation can be divided in two separate equations   

   Multiplying with sin2θon both sides, the above equation becomes ,                       

2

2
2sin)(sinsin


















 Y

Yc
Y

=0 

                    Separating the two variables 

  )(sin)(sinsin 2

2

2
2 saym

Y
Yc

Y



















  

                                  
02

2

2



 


m
Y
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    0)
sin

()(sin
sin

1
2

2








Y
m

c
Y





 

then solution of the I of above two equations is 

     


 imexp
2

1
  

The second is associated Legendre polynomial if C= (+1) 

And hence its solution is  

    cos
|)(2

|)(12(
l

mP
ml

mll




  

Therefore eigen value equation for L2  is 

L2 l
mY   , = l(+1) 2 l

mY   ,   ,  

The eigen value of the operator L2 is  (+1) and the eigen function for L2 is  

l
mY   , =   )exp(cos

)(4

))(12(



imP

ml

mll
m

l


 

thus from the above equation the eigen value equations for the two operators are represented 

by  

m
l

m
lm

lz ym
Y

i
yL 










 

m
l

m
lm

l yll
Y

i
yL 22 )1( 










 

The first few spherical harmonics are listed below: 

4

10
0 Y  

r

z
Y




 4

3
cos

4

30
1   



Introductory Quantum Mechanics                  7.7               Eigen Value Problem and Eigen… 

r

iyx
eY i 

 







8

3
sin

8

31
1   

2

222
20

2

2

16

5
)1cos3(

16

5

r

yxz
Y








  

2

1
2

)(

8

15
sincos

8

15

r

ziyx
eY i 

 





   

2

2
222

2

)(

32

15
sin

32

15

r

iyx
eY i 

 





   

Under a coordinate reflection, or inversion, through the origin, which is realized by the 

transformation + -, the azimuthal wave function ime  is multiplied by(-1)m, and 

)(cosm
lP  by (-1)l+m, hence , ),( l

mY  is multiplied by(-1) l , when r is changed to –r. 

The spherical harmonics are thus eigen functions of the parity operator Up which changes r in 

to –r. 

Up (r )=  (-r ) 

Up ),()1(),(  m
l

lm
l YY   

i.e., m
lY has definite parity in consonance with the parity of angular momentum quantum 

number . 

The spherical harmonics form an orthonormal set since  

  




2

0
0

mm

l

m

l
m       d d sin ),(Y * ),(Y ll

i

l   

We may now define two new operators: 

L+= Lx+iLy, 

L_  = Lx- iLy 

Which can be written in terms of spherical polar coordinates as 

L+ = 


















 cotie i  



Centre for Distance Education                       7.8                      Acharya Nagarjuna University  

L- = - 


















 cotie i  

The eigen value equations for these two operators are 

L+ ),()1)((),( 1   m
l

m
l YmmY   

L_ ),()1)((),( 1   m
l

m
l YmmY   

The operators L+ and L_ are in fact raising and lowering operators for the magnetic quantum 

number. 

L+ AND L- OPERATORS: 

(L+ and L- operators Eigen problem with Orbital Angular Momentum): 

Lା = L୶ + 𝑖L୷and Lି = L୶ − 𝑖L୷ 

Finding Commutation relation between L୸ and Lା 

[L୸, Lା] = ൣL୸, L୶ + 𝑖L୷൧ 

= [L୸, L୶] + 𝑖ൣL୸, L୷൧ 

= 𝑖ℏL୷ + 𝑖(−𝑖ℏL୶) 

= 𝑖ℏൣL୷ − 𝑖L୶൧ 

= ℏൣ𝑖L୷ + L୶൧ 

= ℏൣL୶ + 𝑖L୷൧ 

= ℏLା 

Similarly 

[L୸, Lି] = ൣL୸, L୶ − 𝑖L୷൧ 

= [L୸, L୶] − 𝑖ൣL୸, L୷൧ 

= 𝑖ℏL୷ − 𝑖(−𝑖ℏL୶) 
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= 𝑖ℏൣL୷ + 𝑖L୶൧ 

= ℏൣ𝑖L୷ − L୶൧ 

= −ℏൣL୶ − 𝑖L୷൧ 

= −ℏLି 

7.3 EIGEN VALUES AND EIGEN FUNCTIONS OF RIGID ROTATOR: 

Hydrogen Atom: 

The problem of hydrogen atom, is a two-body problem (namely of the electron of mass ‘m’ 

and proton of mass ’M’).  Since, we are not interested in translational motion of the atom as a 

whole, the centre of mass of the system is taken as the origin of the coordinate system.  Since 

the system is centro-symmetric, it is most convenient to use spherical polar coordinates.  The 

problem can be treated (as in the case of rigid rotator) as a single particle problem of reduced 

mass  = 
Mm

mM


, with the radial coordinate ‘r’ which is equal to the distance between the 

electron and the nucleus.  Potential energy of attraction between the electron and the nucleus 

is  

V = 
r

Ze2
         (8) 

(Here Z = 1 for H-atom.  But for generality ‘Z’ is retained.  The treatment, then, remains 

same for H-like ions He+, Li++ etc. with  appropriate ) 

Schrodinger’s equation for H-atom is  

2 ψ + 
2

2




(E + 

r

Ze 2

) ψ = 0       (9) 

where 2 = 
2

1

r r


(r2 

r


) + 
sin

1
2r 


 (sin 




) + 
22 sin

1

r 2

2




 (10) 

It is well known that the operator for the square of the orbital angular momentum 


2L = -ħ2                      (11) 
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Using this in equation-10, we have 

























2

2

2sin

1
sin

sin

1





 

2 = 
2

1

r r


(r2 

r


) - 
22

2

r

L





        (12) 


2L has eigenfunctions Yℓ.m(,) and eigenvalues ℓ (ℓ+1) ħ2 

where ℓ= 0,1,2,….and ℓ  m .   



2L   ,m

lY  =  ℓ (ℓ+1) ħ2   ,m
lY ; ℓ = 0,1,2,….; ℓ   m    (13) 

From equations 9 and 12,  

2

1

r r


(r2 

r


) - 
22

1

r


2L ψ + 

2

2




(E + 

r

Ze 2

) ψ = 0     (14) 

Using separable variable technique with ψ (r, ,) = N R ( r ) Y (,)  (15) 

R

1

dr

d
(r2 

dr

dR
) + 

2

22



r
(E + 

r

Ze 2

)  =
Y2

1


(


2L Y)     (16) 

The LHS is dependent only on ‘r’ whereas the RHS is dependent only on  and.  But they 

are equal to each other.  Therefore they must be independent of r,  and ; and each must be 

equal to a constant, say ‘’. 


Y2

1


(


2L Y) = 


2L Y(,)  =  ħ2 Y(,) 

We know already (equation-13) that  = ℓ (ℓ+1) with ℓ = 0,1,2,…. 

Therefore equation-16 becomes  

2

1

r dr

d
(r2 

dr

dR
) + 

2

2




[ (E + 

r

Ze 2

) - 
2

2

2

)1(

r

ll




] R = 0    (17) 

The term  
2

2

2

)1(

r

ll




 appears as an addition to the potential and can be considered as 

centrifugal potential since its negative gradient is equal to the centrifugal force experienced 
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by a particle moving in an orbit of radius ‘r’ with angular momentum 2)1( ll .  

Alternatively, it may be looked upon as the K.E associated with the rotary part of the motion 

(

2L / 2 I ) where I  = r2 is the moment of inertia. 

Equation-17 can also be written as  

2

2

dr

Rd
 + 

r

2

dr

dR
 + 

2

2




[ (E + 

r

Ze 2

) - 
2

2

2

)1(

r

ll




] R = 0   (18) 

With the change of the variable as   = r, the above equation becomes 

2

2

d

Rd
 + 

r

2

d

dR
 + [ (

22

2


E

 + 
2

2






2Ze
) - 

2

)1(


ll

] R = 0   (19) 

For bound states (E<0) 

 Let us introduce a new parameter n and also write ‘’ in terms of other known 

constants as  

  = 


2
E2  and n = 




2

22



Ze
      (20) 

With these parameters, equation-19 can be written as  

2

2

d

Rd
 + 


2

d

dR
 + [

4

1
 + 


n

 - 
2

)1(


ll

] R = 0            (21) 

(or) 
2

2

d

d
(  R) +  [

4

1
 + 


n

 - 
2

)1(


ll

] (  R) = 0         (22) 

The asymptotic solution (for ) can be obtained using equation – 21: 

2

2

d

Rd
 = 

4

R
 R (  )    e -  /2       (23) 

The asymptotic solution (for  0) can be obtained using equation 22: 

2

2

d

d
 (  R) -  

2

)1(


ll

 (  R) = 0  R (  )   ℓ     (24) 

The correctness can be checked by back substitution 
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Therefore, the actual solutions for all values of   (or) r may be of the form 

R (  )     f (  )  ℓ e -  / 2       (25) 

With this substitution in equation 21 or 22, we have  


2

2

d

fd
 + (2ℓ + 2-  ) 

d

df
 + (n – ℓ -1) f = 0     (26) 

This equation is similar to the Associated Laguere Differential Equation 

 L"   + (p + 1 -  ) L' + (q – p) L = 0     (27) 

if q = n + ℓ  and p = 2ℓ + 1  

(or)    (q – p) = (n - ℓ - 1) and     (p + 1 -  )  = (2ℓ + 2 -  )   (28) 

This differential equation has a polynomial solution when q – p = +ve integer. 

n - ℓ - 1  =  +ve integer       (29) 

Since ℓ = 0, 1, 2,…., from equation-1.5.39 we have n = ℓ + 1 = 1,2,3,….  (30) 

From equation-21 

En = 
2

2

2222 2

88 










n

Ze



 



 

22

4222

hn

eZ
En


 ; n = 1,2,3….      (31) 

These bound state energies are in accordance with those obtained from Bohr’s theory.  The 

wave functions are 

Ψn,ℓ,m (r, , ) = R n,ℓ ( r )   ,m
lY  

where R n,ℓ (r) are radial function and Y ℓ,m (, ) are spherical harmonics involving angular 

functions. 
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Note: The normalised radial wave functions are as follows: 

R n,ℓ ( r ) = - 

























 




o

l

ln

naZr

l

oo na

Zr
e

na

Zr

lnn

ln

na

Z
Lo

22

])![(2

)!1(2 12)/(

3

3

 

where 
)!12()!1(

])![()1(
)(

211

0

12

klkln

ln kkln

k

l

lnL 









        and  

ao = e2/ ħ2 = Bohr’s first orbit radius. 

7.4 SUMMARY: 

The summary of the problem of the orbital angular momentum can be written as follows: 

Quantity Operator form Eigen function 
Eigen 
value 

Lz -iħ



    


 imexp
2

1
  m  

L2 


























2

2

2

2

sin

1
sin

sin

1





      cos

|)(2

|)(12(
l

mP
ml

mll




  

2)1( ll  

 

7.5 TECHNICAL TERMS: 

 Eigen value problem for 𝐿௭ 𝑎𝑛𝑑 𝐿ଶoperators, Eigen value and eigen function of rigid 
 rotator and Hydrogen atom 

7.6 SELF ASSESSMENTS: 

1) Explain about the Eigen value problem for 𝐿௭ 𝑎𝑛𝑑 𝐿ଶoperators 

2) Explain about the Eigen value and eigen function of rigid rotator and Hydrogen 
atom 

7.7 SUGGESTED READINGS: 

1) Advanced Quantum Mechanics-B.S. Rajput (Pragati Prakasan, Meerut 1990). 

2) Quantum Mechanics-Merzbacher E (John Wiley & Sons, New York). 

3) Introduction to Quantum Mechanics-Mathews P T (Mc Graw Hill Book Co., New 
York). 

4) Quantum Mechanics by V.K. Thankappan (Wiley Eastern. Ltd., New Delhi,1986. 
 

Prof. R.V.S.S.N. Ravi Kumar 



LESSON-8 

TIME INDEPENDENT PERTURBATION THEORY  

(FOR NON - DEGENERATE AND DEGENERATE CASES) 

8.0 AIM AND OBJETIVE: 

The primary goal of this chapter is to understand the concept of Time Independent 
Perturbation Theory (for Non-degenerate system and degenerate system). The chapter began 
with understanding of degenerate system, Time Independent Perturbation Theory for Non-
degenerate system, Time Independent Perturbation Theory for degenerate system. After 
completing this chapter, the student will understand the complete idea about Time 
Independent Perturbation Theory (for Non-degenerate system and degenerate system). 

STRUCTURE: 

8.1  Introduction 

8.2  Time Independent Perturbation Theory 

8.3  Time Independent Perturbation Theory for Non-Degenerate System 

8.4  Time Independent Perturbation Theory for Degenerate System 

8.5  Summary 

8.6  Technical Terms 

8.7  Self Assessment Questions 

8.9  Suggested Readings 

8.1 INTRODUCTION: 

In quantum mechanics, perturbation theory is an approximation scheme for describing such a 

complicated quantum system in terms of a simpler one. The main idea here is to start with a 

simple system and gradually turn on an additional perturbing Hamiltonian representing a 

weak disturbance to the system. As such Hamiltonian can be split into several terms, some of 

which may play by far the most significant role than others and such terms can be treated 

exactly to obtain analytic solution to the eigen value problem, and the effect of the rest of the 

terms can be estimated in an approximate way.   

  The perturbation theory enables us to calculate these small changes.  Similarly 

quantum mechanical systems can be treated with perturbation methods.  
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In the case of perturbation theory, these are two cases which can treated separately as  

(i) Time-dependent perturbation theory (ii) Time-independent perturbation theory. Further 

Time-independent perturbation theory is applied to degenerate and non-degenerate system 

separately. 

The stationary perturbation theory concerns with finding the changes in energy levels 

and eigen functions of a system when a small disturbance is applied.  In such cases, the 

Hamiltonian may be considered as split into two parts, one of them is a major part, which 

characterizes the system for which exact solution is obtained for the wave equation; while the 

second part is small and treated as perturbation. 

8.2 TIME INDEPENDENT PERTURBATION THEORY: 

Now, in this section we study the time-independent perturbation theory applied to a 

non-degenerate system.  If one energy value or energy level is corresponding to only one 

wave function, then such a system is called as non-degenerate system. 

  We start with the Schrodinger wave equation, which basically describes a single particle, for 

obtaining the energy values and eigen functions for the 1st order and 2nd order perturbations. 

We begin with an unperturbed Hamiltonian H(0) which is also assumed to have no time 

dependence. It has known eigen functions arising from the time independent Schrodinger 

equation which is written as. 

     o
n

o
n

v
n

o EH 
    …….. (1) 

Where o
nE  is the energy of the nth level of the system and corresponding eigen function is 

 o
n .  This means eigen values and eigen /functions of the unperturbed problem is oE1

,E2
(1),E3

(0)…..En
(0) and 1

(0), 2
(0), 3

(0)…m
(0) respectively. 

For the perturbed system, the eigen function n  satisfies the equation. 

Hn=Enn   …….. (2) 

Where En are the energy values of the modified Hamiltonian; representing the operator 
















v
m
hH 2

2

2
   ……..(3) 



Introductory Quantum Mechanics                  8.3        Time Independent Perturbation Theory 

Let us assume that it is possible to expand H interms of some parameter, giving the 

expression. 

H=H0 + H(1)+ 2H(2)+  …….. (4) 

Where H0 is the unperturbed Hamiltonian and is large compared with H(1) (i.e.) the energy 

associated with H(0) is large when compared with the energy associated with H(1). 

Further it is also assumed that it is possible to expand eigen function n, and eigen value En 

of the total Hamiltonian of equation (4) in terms of  as. 

En=En
(0)+En

(1)+2En
(2)+  …….. (5) 

n=n
(0)+n

(1)+2n
(2)+  …….. (6) 

in which the quantities En
(1), En

(2) …. and n
(1), n

(2) …is to be found. 

Equations (4), (5) and (6) and now substituted in eq.(3), yielding. 

[H(0)+H(1)] [n
(0)+n

(1)+2n
(2)+-----] = [En

(0)+En
(1)+2En

(2)----] 

[n
(0)+n

(1)+2n
(2)+……] 

Which in turn gives 

H(0)n
(0)+(H0n

(1)+H(0)n
(0)) + 2(H(0)n

(2)+H(1)n
(1)) +-------- 

=En
(0)n

(0)+(En
(0)n

(1)+En
(1)n

(0))2(En
(1)n

(1)+En
(1)n

(1)+En
(2)n

(0))+ …….. (7) 

The above equation is satisfied for all powers of , only if  the equal powers of  on either 

side are equal.  On comparing equal powers of 0,1, 2. -----we get.     

For 0,   H0n
(0)=En

(0)n0       …….. (8) 

For 1,   H0n
(1)+H(1)n

(0) = En
(0)n

(1)+En
(0)n

(1)+En
(1)n

(0)   …….. (9) 

For 2,   H(0)m
(2)+H(1)m

(1) = Em
(1)m

(1)+Em
(2)m

(0)            …….. (10) 

Equations (8), (9), (10) corresponds to unperturbed, first order perturbation and second order 

perturbation equation respectively, we can also obtain higher order terms to get more and 

more accurate corrections to exact solution.  Using the equation (9) and (10) we calculate the 

1st order and 2nd order energy values and eigen functions respectively. 
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First Order correction to the energy value En
(1) 

    Taking the eq.(9) we now obtain the first order corrections to the energy value En
(1). 

(i.e)  H0n
(1)+H(1)n

(0)=En
(0)n

(1)+En
(1)n

(0)      …….. (9). 

Using the expansion theorem, the perturbed eigen function n
(1) can be expanded interms of 

the unperturbed eigen function as  

   





0

01

n
mmn        …….. (11) 

Substituting this equation (13) in eq(11), we determine the first order correction, we have. 

               
m m

nmmnmnmm EEHH 01000100    …….. (12) 

From the unperturbed system for mth level, we know 

       0000
mmn EH             …….. (13) 

so that  (13) now rewritten as. 

             01000100
nnm

m m
nmnmmm EEHE     

(OR) 

            0001000
nnnm

m
nnm EHEE                    …….. (14) 

On multiplying both sides with  *0
n  from left side and integrating over the space integral, we 

get 

                    dEdHdEE nnnnnmn
m

nmm 


 0000100000  …….. (15) 

Making use of the orthonormal condition of the wave function 

    (i.e.)      
ijnn d   00 *

 

     where  0ij  if  i j                    ---------(16) 

                       = 1 if  ij 
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The equation (15) below: 

       1010
nnn EdH    

OR 

         10101 *

nnnnn HdHE      -----------(17) 

=      1010 || nnnn HH      -----------(17a) 

which is first order perturbation of the energy value.    

First order correction for wave function n
(1) 

 For obtaining the first order wave function n
(1), we once again consider the eq.(11) and 

multiplying on both sides with m
(0)* from left side and then integrate over the space integral, 

we get the situation as 

                 dHdEE nmmn
m

nnm
0100000 **

 

                          =        dE nmn
001 *

        ----------(18) 

Using the condition as per eq. (18), we have 

           001000 *
   dHEE nmnmm  

      (i.e.)  
     

    nm
EE

dH

nm

nm
m 




  ,10

010 *


  

                = - 
 

   

 

   00

1

00

010 ||

nm

nm

nm

nm

EE
H

EE

H







   ------(19) 

    so that n
(1) = 

     

   
 0

0
00

0101
*

m
m mm

nn

EE

dH




 
 

















   -------(19a) 
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Now after the first order corrections to energy value and eigen function, we get. 

   10
nnn EEE   

                     =              100100 *
nnnnnn HEdHE    -----(20) 

n =    10
nn    

                     =  
     

   
 0

1

0
00

010
0

n
m nn

nn
n EE

dH







 
 















  

                                 (1 is written omitting m=n) 

                            =  
 

 0

0
00

1
0

1

m
m nm

nn
n EE

H

















  ------------------(21) 

Second order correction for energy value En
(2) 

We consider the eq. (2.1.10) for evaluation a2 En(2).  Again the function n
(2) is expressed as a 

linear combination of known function m
(0), as 

   02
m

m
mn     ----------------------(22) 

On substituting eqs. (22) and (11) in eq.(10), we get 

                   0201000100
nnmn

m
m

m
mmmm

m
mm

m
m EEEHH     ---------(23) 

on using eq.(13),  we have 

                  020101000
nnm

m
mm

m
nmmnm

m
m EHEEE     

                                          =           02011
nnm

m
nm EHE   --------(24) 

Now multiplying both sides of eq. (24) with n
(0)* from left side, and integrating over the 

space integrals, we get. 
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                       dnnnEdm
m

HnEmmdmnnEnEm
0*02011*00*000

  





   






  -------(25) 

Applying condition (18) to eq. (25) we get. 

         dHE n
m

nmm
0102 *

   

                          =         
m

nnm
m

nnm HH 1010 (||  -------------(26) 

Substituting the value of m from eq. (19), we have  

 
           

    



1

00

010010
2

**
.

m nn

nnnm
n EE

dHdH
E


 

    or      
   

    


1

00

11
2 .

m nn

nnn
n EE

HH
E    ----------------(27) 

Second order correction to eigen function n
(2) 

For obtaining n
(2), multiply eq.(24) with n

(0)* on both sides from left; and integrating over 

the space integral, we get. 

         dmm
m

nEmEm
0*000  






   

                   =                      .0020110 **
 dEdHE nmnm

m
nnmm      -------(28) 

on using condition (18) again here also,  the above equation is reduced to . 

          




    dEEE mmn

m
mnmm

00100 *
 

    or       
       





 


  


 dHE

EE mmn
m nm

m
m

0101
00

*
---------(29) 
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and     
     

   

       

   
 0

00

0101

00

010
2

*

n
m nm

nmn

nm

nm
n EE

dHE
EE

H



  






















 --------(30) 

                   (1 is used to omit m=n) 

In order to get the energy values and eigen functions, the values of En
(1), En

(2) and n
(1),n

(2) 

are substituted from the equation (17), (27) and (19a), (30) in the following equation. 

       22100
nnnn EEEE    

     2210
nnnn    

Using the above theoretical considerations, the corresponding 1st order and 2nd corrections to 

the perturbed system can be calculated. 

Proceeding in the above manner, we can evaluate higher order corrections for the perturbed 

systems to more and more accuracy.   

8.3 TIME INDEPENDENT PERTURBATION ON THEORY FOR NON-

 DEGENERATE SYSTEM: 

In this we take up the following examples and evaluate the perturbed energy and eigen 

function. 

(i) The perturbed Harmonic oscillator. 

(ii) The Normal Helium atom. 

i)   The Perturbed Harmonic Oscillator 

Let us consider the wave equation for the perturbed Harmonic oscillator in one dimensions 

as. 

0
2
12 43

2

2

22

2









 





 ba

x
kE

x
m

dx
d                 -------------(31) 

     This equation reduces to Harmonic oscillator wave equation if the constants a and b are 

zero.  Assuming a and b are small, we treat these terms as perturbation. 

(i.e.)   H(1) = ax3  + bx4     …………(32) 
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   Let us calculate the first order correction to the energy En(1) given by eq.(17) 

 (i.e.).          


dHE nnn  0101 *

 

    








dbxdax nnmn
0400

3
0 *




 -----(33) 

 Since the first integral on the right side is an odd function as  x3 is odd and    00 *

nn   is even 

function, over a symmetrical limits whose value is zero.  As such the value of the first 

integral is zero (i.e.) first order perturbation due to ax3 is zero. 

Hence         




dxbE nnn
0401 *




 ………(34) 

From the knowledge of the linear Harmonic oscillator, whose wave function is given by . 

   2/exp)()( 20 *

  nnn HNx   ……..(35) 

Where 22
4

1

2&  mandh
x
mkx 






  

Substituting (5) in eq. (4) we get. 

  














 


 





 




deHNbE nnn ..)(. 4

4
221 2

 

= 





deH

N
b

p

n
n ..)(. 42
5

2 2

   …….(36) 

For evaluating this integral, consider the following recurrence relations from Hermite 

polynomials. 

)(1)(1
2
1)(   nnn nHHH  ………………(37) 

or   )(1)(1(
2
1)(2   nnn HnHH ………….(38) 



Centre for Distance Education                       8.10                      Acharya Nagarjuna University  

Replaying  n=n+1 and n=n-1 in eq.(2.1.38), we have 

)()1()(2
2
1)(1  nnn HnHH     …………..(39) 

)(2)1()(1
2
1)(1   nnn HnHH ………(40) 

Now Substituting eqs. (39) and (40) in eq. (38), we get. 

)()1()()
2
1()(

2
1)( 22

2    nnnn HnnHnHH ……41. 

Squaring and substituting in eq. (2.1.36), we have 

  








dHnnnHe
N

bE nn
n

n

2

225

2
1

5

2

)()1()
2
1()(

4
1.  



  



    ……(42) 

From Hermite polynomials, we know that 

0)()(
2













dHHe mn  if mm 

!2 n     if m=n……..….(42) 

Using those result in eq.(2.1.42), it becomes 

  





 



  )!2(2)1(2!)

2
1(2)!2

16
1. 2222

5

2
1 nnnnn

N
bE nnnn

n 


 

= |})2(2)1(2)!)(
2
1(2)2(

16
11

!2

222
2

5
2
1 


























nnnnnn
n

nn
n

n




  

Where we used the normalized function of Harmonic oscillator. 

Nn value as 















!22
1

n
N

n
n



  

On simplification, we get 
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  )122(
4

3. 2
4

1  nnbEn 
 

Now the total energy to first order becomes. 

    )122(
4
3)

2
1( 2

22
10  nn

mK
bnEEE cnnn





  

ii) The Normal Helium Atom: 

Helium atom consists of a nucleus of charge Ze at the origin and two electrons with radius 

vectors r1 and r2 as shown in Fig. (1) 

 

Neglecting the motion of the nucleus, the Hamiltonian of the system is written as. 

12

2

2

2
2
2

2

1

2
2
1

2
1

2

2
*

2
*

r
e

r
ze

mr
ze

m
H 

























 ……..(43) 

In which 1 and 2 represent the coordinates of electrons 1 and 2 respectively. 

Now, the wave equation for the two electrons is written as 

02

12

2

2

2

1

2

2
2
2

2
1 








 

r
e

r
ze

r
zeEm


  …..(44) 

The term 
12

2

r
e  is considered as the perturbed term, since omitting this term, the above 

equation can be exactly solved.  Hence, the perturbed Hamiltonian is written as. 

 

12

2
1

r
eH   …………(45) 

Separately writing the unperturbed wave equation into two equation by substituting. 
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)()(),( 222
0
2111

0
1222111

0 zyxuzyxzyxzyx   …….(46) 

In polar coordinates r1, 1,1, and r2,2, 2  to the normal state, the wave function is: 

    )()( 222
0

100111
0
100

0
100,100  rr ……(47) 

=   )()( 222
0

2111
0
1  ruru  

and the corresponding energy value is: 

     
 EZEEE 20

2
0

1
0

100,100 2     …..( 48) 

Where EH is the energy corresponding to one electron = eume 6.13
2 2

4




 

The first order perturbed energy function E(1) is the average value of the perturbation function 

H(1) over the unperturbed state of the system.  Hence, First order correction to the ground 

state energy is  

            d
r
edHE nn

20
100,100

12

2
0101 *

   ……….(49) 

=        
21

0
2

0
1

12

2*0
2

*0
1  dduu

r
euu   

We know that  

   
)2(2

1

3
0

3
0

100
0

1

p

e
a

Zu













   …….(50) 

in which 1=
0

12
a
Zr  and radius  22

2

0 4 me
r




  

so that    22

3
0

3
0

100,100

21 pa

pe
a

Z





 ……(51) 

and space integral d is 

2222
2

21111
2

121  ddSindrrddSindrrddd   
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on substituting (49) in energy equation (50), we get 

 
2121

012
6
0

2

26
1 )(2exp1




ddrr
a
Z

ra
eZE 








   ……(52) 

Evaluation of the integral in eq.(50) may be done by expanding 
12

1
r

 in terms of legendre 

polynomials and hence the value of the integral leads to a value of 
4

5 HZE  for the first order 

correction to the ground state. 

The energy corrected to first order is then given by:       

HHH EZZEZEZE 



 

4
52.

4
52 22  

It may be noted that E(1) is about 31% of E(0), since 

 

ZEZ
ZE

E
E

H

H

8
5

2
5

2
4/

0

1

  

The correction is subtractive which is understandable since the effect of the electron-electron 

contraction is to reduce the electron nucleus attraction.  Then the result holds good for two 

electron atoms like Li+, Be
++, B3+ etc., ….with  Z= 3,4,5 ……. 

8.4 TIME INDEPENDENT PERTURBATION THEORY FOR DEGENERATE 

 SYSTEM: 

An energy level is called -fold degenerate when these exist  linearly independent wave 

functions such as k1, k2…….k satisfying the wave equation. 

Clearly, we can explain this if we have  eigen function        0........0
3

0
2,0

1  kkkk  corresponding 

to the eigen state  0
kE . Such that there is no relation of the form. 

      0010
22

0
11   kCkCkC ……(53) 

connecting them, then we say that the  eigen functions are linearly independent and this 

eigen state  0
kE  is  fold degenerate. 



Centre for Distance Education                       8.14                      Acharya Nagarjuna University  

We have shown earlier that eigen functions belonging to different eigen values are 

orthogonal, however eigen functions belonging to the same eigen value need not be 

orthogonal. 

    Let, in the perturbed state, the Schrodinger wave equation be given by 

H=E ………                             ….(54) 

Where H is the perturbed Hamiltonian, E the perturbed energy and    the perturbed wave 

function. 

Now, the perturbed Hamiltonian can be expressed in terms of unperturbed Hamiltonian H(0) 

as. 

    2210 HHHH    …………….(55) 

Let us assume      00
2

0
1 .......,  kkk  are not orthogonal.  We have,  

                 0000.....0
2

00
2

0,0
1

00
1

0
 kkEkHkkEkHkkEkH   

Consider the linear combination 0
kX  

       ......00........0
22

0
11 kXkCkCkC   ………(56) 

so that we have 

             00
2......0

2
020

1
0

1
00

 kkECkkECkkECkXH  ……         (57) 

           = 00

kk XE  

which proves that the linear combination 0
kX  is also an eigen function corresponding to the 

same degenerate energy value. 

We can choose the constants in eq.(56) in an infinite number of ways, we can construct 

infinite number of such linear combinations, all of them being eigen function of the same 

eigen value. There is nothing unique about any set of eigen functions for a degenerate level. 

For instance, we can select the following  linear combination: 
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       0
1

0
212

0
111

0
1 ........  kkkk CCCX   

       0
2

0
222

0
121

0
2 ........  kkkk CCCX    ……..58. 

       00
22

0
11

0 ........   kkkk CCCX   

which may be represented as :   

   






1

0
11

0

l klll
CklX     (l=1,2,3,……)    ……..59.       

These combinations are entirely equivalent to the original set      00
2

0
1 ......,  kkk . The 

transformation expressed by eq. (59) is known as linear transformation with constant 

coefficients. With this background about degenerate states, we now discuss the perturbation 

for such states. 

The wave equation for unperturbed system is: 

     0000  EH     ……………………60. 

There are severed eigen  states for this unperturbed system, each of them corresponding to 

several degenerate eigen function as  

Energy value                                   eigen functions. 

 0
0E        0

0
0

03
0

02
0

01 ...........,,   

 0
1E      0

0
0

12
0

01 ..,.........,   

 0
kE      0

0
0
2

0
1 ..,.........,  kk  

We can assume the linear combination of eq.(59),  provided the function kl is: 

   221
klklklkl     ………….                  (61) 

and            2210
klEklEkEklE     …………….(62) 

Now substitute the values of H, kl, Ekl from equation (55), (61) and (62) the perturbed 

equation given by 
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0 klklkl EH      ………………(63) 

We have 

           ........... 22102210  klklklXHHH   

-           0....2210.....2210 





 





  klklklXklEklEkE   

Rewriting the above. 

                    0....011001100000  klklklkklklklkkl XEEHHXEXH   …….(64) 

We now take up the first order perturbation equation, which can be obtained by equating 

coefficient of  equal to zero. 

(i.e.)              001000110  klklklkklkl XEEHH       ……………..(65) 

Let us expand   1
kl  as. 

   01
11

11
11 lk

lk
lklkkl C           …………….(66) 

On substituting equation (66) and (59) in equation (65) 

We get 

           0001

1

00
11

11
1111111 lkk

lk
lklkkl

l
kllklklk ECHCHC 



 


 -    0
1

1

1'
1.

klklE
l

ll
C 





=0 

Since         0000
11111 lkklk

EH     we have after recommendation. 

           1
11

11

11
1

0
11

00
111

11
lk

HklE
l

ll
C

lkkE
k

E
lk

lklk
C 


 






 













  
 …………(67) 

Multiplying both sides with  *0
kj from left, and integrating over configuration space 

       d
lkkjlkE

k
E

lk
lklk

C 0
11

*000
111

11 







  

=            











 





d

kl
Hkjd

klkjklE
l

ll
C 1

1
1*01

1
*01

1'
1    …………..(68) 
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when k1k,     00
11

0   d
lkkj  and when k=k1,     00

'
0
' 

k
E

k
E     L.H.S. reduces to zero.    

So that  eq…..(69) 

We use the notation 

        


dklHkll
H 1101

'  …………..(70) 

and since      00
2

0 ......,  kkkl  are non-orthogonal. 

we introduce the symbol        d
klkjjl
0
1

0
1    ……….(71) 

Using the above symbols, eq. (69) becomes 

  0)1
11

1(
1'

1 
 jl

H
jlklE

l
ll

C
  

or        0)1
11

1(
1'

1 


jlklE
jl

H
l

ll
C

 …………(72) 

As there are  eigen functions      00
2

1
1 ,......,  kkk  we can similarly get  equations like eq.(72) 

for j=0,1,2,3…..  Eq.(72)  represents a system of  homogeneous linear simultaneous 

equation in  unknown quantities  

In the expanded from, these  equations are. 

          0)(......)()( 11
11

11212
11

121111
11

11   CEHCEHCEH klklkl  

          02)2
1

1
1

2(......22)22
11

22(21)21
11

21(   ClEHCklEHCklEH    …….(73) 

     - - -  - - - - - - - - - - - - - - - -   

          0)(......)()( 11
22

11
211

11
1   CEHCEHCEH klklkl  

To understand how this set of equations is solved, a knowledge of determinations and their 

use in solving such equations is necessary, if such a set of homogeneous linear equations is to 

have non-zero solutions is that the determinant of the coefficients of the unknown quantities 

vanish i.e. 
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   
11

11
11  klEH        

 1
11

12
11

12 ..........  klkl EHEH  

   
12

11
21  klEH        

 2
11

222
11

22 ..........  klkl EHEH  

- - - - - - - - - - - - - - - - - - - - - - -  

- - - - - - - - - - - - - - - - - - - - - -                                              = 0    (74) 

- - - - - - - - - - - - - - - - - - - - - - - - - -  

 

   
1

11
1   klEH        

  11
2

11
2 ......... klkl EHEH  

Using the condition jl
1=0 if jl1 

                      = 1 if j=jl
’. 

We have 

  )( 11
11 klEH     1

1
1

12 .............. HH  

 1
21H     )( 11

22 klEH  …………  1
2H  

  - - - - - - - - - - - - - - - - - - - - - - - -                      = 0   …………(75) 

 1
1H  1

2H ………………    11
klEH   

equation (74) and (75) are known as secular equation. 

If the secular equation is in diagonal form that is all the elements except on the principal 

diagonal are zero, then the initially assumed eigen functions      0,.......0
2,0

1  kkk  are  themselves 

the correct zeroth order wave functions. 

The secular equation in which all the elements on the principal diagonal is in the form. 

   11
11 klEH            0                0   ……………..0 

   0    21
22 klEH             0      --- --------  0 

   - - - - - - - - - - - - - - - - - - - - - - - - - - - -                           =0   …….(76) 
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   0                   0                 0- - - - - - -    11
klEH   

then its expansion is  

           1111
22

11
11 ())(( klklkl EHEHEH   ) =0 

The roots of the equation are: 

       11
22

1
11

1 ,, HHHEkl   

In such a case, all the coefficients Cl1, Cl2……..Cl turn out to the zero. 

Equation (25) may be written in another useful from by making use of the substitution. 

   10
ijijij HHH     or   

 



0
1 ijij

ij

HH
H


  

and     10
klkkl EEE        or  



0
1 kkl

kl
EE

E


  

After taking t 1/ and using. 

 0
jlH =0 if jl 

=  0
kE    if j=l. 

With the above eq. (75) becomes 

 

             H11-Ekl                H12  ---------------------H1 

             H21                     H22-Ekl  ------------------H2 

                    -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -                             =  0        …..(76) 

H1                     H2    ------------- H-Ekl 
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Observing the equations (24) and (25), we note that if a perturbation has non-vanishing 
matrix elements Hij among a set of degenerate states, then it will change the wave function in 
the zeroth order.  If the set of wave functions is non-degenerate on the other hand. The 
perturbation effect the wave functions only in the first and second orders. 

8.5 SUMMARY: 

Perturbation theory is an extremely important tool for describing real quantum systems, as it 
turns out to be very difficult to find exact solutions to the Schrodinger equation for 
Hamiltonians of even moderate complexity, most of the Hamiltonians to which we know 
exact solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle 
in a box, are too idealized to adequately describe most systems.  Using perturbation theory, 
we can use the known solutions of these simple Hamiltonians to generate solutions for a wide 
range of more complicated systems. 

8.6 TECHNICAL TERMS: 

 Time Independent Perturbation Theory, Time Independent Perturbation Theory for 
 Non Degenerate System, Time Independent Perturbation Theory for Degenerate 
 System. 

8.7 SELF-ASSESSMENT QUESTIONS: 

1) Explain about the Time independent perturbation theory. 

2) Explain about the Degenerate system of Time independent perturbation theory. 

3) Explain about the Non-Degenerate system of Time independent perturbation 
theory 

8.8 SUGGESTED READINGS: 

1) Quantum Mechanics - G. Aruldhas. (Prentice-Hall of India) 

2) Quantum Mechanics-Theory and applications - A.K.Ghatak and S.Lokanathan 
(Macmillan) 

3) Quantum Mechanics - Gupta, Kumar & Sharma. 

4) Quantum Mechanics - E.Merzbacher. 

5) Principles of Quantum Mechanics - R.Shankar (Plenum Press) 

 

Prof. G. Naga Raju 



LESSON-9 

APPLICATIONS TO NORMAL HELIUM ATOM AND STARK EFFECT 

9.0 AIM AND OBJECTIVE: 

The primary goal of this chapter is to understand the concept of Application to normal helium 

atom and Stark effect. The chapter began with understanding of Application to normal helium 

atom and Stark effect. After completing this chapter, the student will understand the complete 

idea about Application to normal helium atom and Stark effect 

STRUCTURE: 

9.1 Introduction 

9.2 Application to Normal Helium Atom 

9.3 Application to Stark Effect 

9.4 Summary 

9.5 Technical Terms 

9.6 Self Assessment Questions 

9.7 Suggested Readings 

9.1 INTRODUCTION: 

The Stark effect refers to the splitting and shifting of atomic energy levels when an atom is 

placed in an external electric field. In the case of a normal helium atom (He), which consists 

of two protons, two neutrons, and two electrons, the Stark effect offers valuable insights into 

its electronic structure and behavior under external influences. Helium is particularly 

interesting because, unlike hydrogen (with only one electron), it has two electrons, leading to 

more complex interactions and a richer variety of phenomena when subjected to an external 

electric field. 

9.2 APPLICATION TO NORMAL HELIUM ATOM: 

The Normal Helium atom: 

Helium atom consists of a nucleus of charge Ze at the origin and two electrons with radius 

vectors r1 and r2 as shown in Fig. (1) 
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Fig. 9.1 

Neglecting the motion of the nucleus, the Hamiltonian of the system is written as. 

12

2

2

2
2
2

2

1

2
2
1

2
1

2

2

*

2

*

r

e

r

ze

mr

ze

m
H 



























 
---------- (1) 

in which 1 and 2 represent the coordinates of electrons 1 and 2 respectively. 

Now, the wave equation for the two electrons is written as 

0
2

12

2

2

2

1

2

2
2
2

2
1 








 
r

e

r

ze

r

ze
E

m


   

 
---------- (2) 

The term 
12

2

r

e
 is considered as the perturbed term, since omitting this term, the above 

equation can be exactly solved.  Hence, the perturbed Hamiltonian is written as. 

 

12

2
1

r

e
H   

    
---------- (3) 

Separately writing the unperturbed wave equation into two equation by substituting. 

  )()(),( 222
0
2111

0
1222111

0 zyxuzyxzyxzyx  
 
---------- (4) 

In polar coordinates r1, 1,1, and r2,2, 2  to the normal state, the wave function is: 

    )()( 222
0

100111
0
100

0
100,100  rr

 
---------- (5) 
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=   )()( 222
0

2111
0
1  ruru  

and the corresponding energy value is: 

   
     

 EZEEE 20
2

0
1

0
100,100 2     

 
---------- (6) 

Where EH is the energy corresponding to one electron = eu
me

6.13
2 2

4




 

The first order perturbed energy function E(1) is the average value of the perturbation function 

H(1) over the unperturbed state of the system.  Hence, First order correction to the ground 

state energy is  

 

            d
r

e
dHE nn

20
100,100

12

2
0101 *

   
 

---------- (7) 

                =        
21

0
2

0
1

12

2*0
2

*0
1  dduu

r

e
uu   

We know that  

   
)2(2

1

3
0

3
0

100
0

1

p

e
a

Z
u














   

  
---------- (8) 

in which 1=
0

12

a

Zr
 and radius  

22

2

0
4 me

r



  

so that       22

3
0

3
0

100,100

21 pa

pe
a

Z






  

---------- (9) 

and space integral d is 

2222
2

21111
2

121  ddSindrrddSindrrddd   

on substituting (2.1.51) in energy equation (10), we get 
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 
2121

012
6
0

2

26
1 )(

2
exp

1 


ddrr
a

Z

ra

eZ
E 








     ---------- (11) 

Evaluation of the integral in eq.(2.1.52.) may be done by expanding 
12

1

r
 in terms of legendre 

polynomials and hence the value of the integral leads to a value of 
4

5 HZE
 for the first order 

correction to the ground state. 

The energy corrected to first order is then given by :       

HHH EZZEZEZE 



 

4

5
2.

4

5
2 22  

It may be noted that E(1) is about 31% of E(0), since 

 

ZEZ

ZE

E

E

H

H

8

5

2

5
2

4/

0

1

  

The correction is subtractive which is understandable since the effect of the electron-electron 

contraction is to reduce the electron nucleus  attraction.  Then the result holds good for two 

electron atoms like Li+, Be
++, B3+ etc., ….with  Z= 3,4,5 ……. 

9.3 APPLICATION TO STARK EFFECT IN HYDROGEN ATOM: 

Stark effect of Hydrogen atom: 

When an atom is placed in a uniform electric field, the energy levels are shifted.  The shifting 

of energy levels produce a splitting of spectral line, called stark effect which was first 

observed in 1913 by stark in hydrogen atom. 

Let us consider the first order change in energy levels of a hydrogen atom due to an external 

electric field of strength, E,  along the positive Z-axis which is polar axis whose coordinates 

are Z= rCos. 

For the hydrogen atom, the unperturbed Hamiltonian is given as  

 
r

e
H

2
2

2

2
0 





        

   
---------- (12) 

Where  is the reduced mass. 
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Now considering the perturbation H(1) is taken as 

  eErCoseEzH 1    
  

---------- (13) 

in which e is electric charge and the external electric field E. 

In case of hydrogen atom, potential energy and wave function are spherically symmetric.  

Now, the parity of the spherical harmonics depends on the azimuthal quantum number 
l

1  as (-

1)l, which gives odd parity, if  
l

1  is odd and even parity when l is even.  Further, even if 

parities were different, matrix elements connecting states with different m values also vanish, 

making the interaction impotent to split m-degeneracy.   

For the ground state of the hydrogen atom(n=1,l=0,m=0), the wave function is spherically 

symmetric and has the same form for all orientation, there is no degeneracy. 

The ground state wave function for hydrogen atom is 

),(00)(10100  YrR  

                         =
4

1
)(10 rR    

 
---------- (14) 

The perturbation H(1) has the odd parity according the eq. (15) 

    0100
1

100
1

100,100   dHH  

In order to understand the above, we have 

H(1) = +eErCos 

The first order perturbation energy in the ground state of Hydrogen atom is. 

   drddSinrrCoseEH 2
100)(100

1
100,100     

where 100=R10 Y00 (,) 
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    and Y00(,)=N00P0
0(Cos)  0()=

4
1

 

0() = 
2

1 1.)(0
0 Cosp  

             N00=
2

1
 

              R10(r )    = )exp(.
2

0

2
1

0

2

a

r

a










 

 so that      100=
4

1
).exp(..

2

0

2
1

0

2

a

r

a










 

Now 
  




  

ddrdSinre
a

rCoseEH
a

r

2

0

2

0 0
3
0

1
100,100 ..

1 0

2

     =  0    ---------- (16) 

Thus we observe that there is no first order stark effect to the ground state of the hydrogen 

atom. 

The first excited state (n=R) of hydrogen atom is four-fold degenerate since it has the (l,m) 

values (0,0), (1,0),(1,1) and (1,-1).  Let the electric field E is applied along the positive Z-axis 

which interacts with the electric dipole moment giving the perturbing Hamiltonian, 

H(1)=eEZ=erECos. 

With the help of the quantum number (n l m), the four-fold degenerates states are specified as 

  121,211,210,200:  nlm  

As the degeneracy is four-fold. We have to evaluate sixteen matrix elements of H(1) in the 

perturbation theory for degenerate states. 

Clearly, we write the above four wave function as. 

)(
4

1
),()( 200020200 rRYrR


 

  
---------- (17) 
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


 CosrRYrR )(
4

3
),()( 211021210 

 
---------- (18) 




 ieSinrRYR )(
8

3
211121211 

  
---------- (19) 

)(218

3
1,1211,1,2 rR

i
eSinYR






   

  
---------- (20) 

In these 200 has even parity and 210, 211, and 2.1.-1 have odd parity. 

Writing down the secular equation with the sixteen matrix elements, we have. 

 
  EH 1

200,200
 1

211,200H  1
211,200H

 1
1,21,200 H  

 
 1

200,211H
  EH 1

211,211
 1

210,211H  1
1,21,211 H
                       

   
---------- (21) 

                             

 
 1

200,210H
 1

211,210H   EH 1
211,210

 1
1,21,210 H                                   

   H21,-1,200
 1

211,1,21 H  1
210,1,21 H    11

1,21,1,21 EH    

Since 200 and 200 have even parity. He element of the secular determinant. 

    0200
1

200
1

200,200  







dHH     
 

---------- (22) 

Similar to the equation (22) 

In a similar way,  

     1
1,21,1,21

1
210,210

1
211,211 ,, HHH  are Zero 

That means the four diagonal elements of matrix are Zero since they correspond to same 

parity. 

Now the off-diagonal elements between states of different in values (i.e.)  

                 
200,1,21

1
1,21,200

1
200,211

1
211,200

1
210,1,21

1
211,1,21

1
1,21,210

1
211,210

1
1,21,211

1
210,211 ;;;;;;;;;  andHHHHHHHHHH  
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are also Zero since. 

   0exp
2

0

1 


 dmmi  if m1m    
  

---------- (23) 

Hence, out of the sixteen matrix elements,  the only two matrix elements remains non-Zero 

are 
  1

200,210
1

210,200 andHH   These two are again symmetrical, it is enough if we valuate one 

element out of the two. 

Let us consider. 

     dHH 210
1*

200
1

210,200 
  

---------- (24) 

For which               )/
4

1
20200 rR


   

The evaluation of )(
20
rR is taken up from the radial part of the hydrogen atom wave function. 

 
)

0

2
(12).

0

2
).(

0
exp(.

2

1

3)!(2

)!1(
3

0

2
)(

na

zr
ln

l
na

Zrl

na

Zr

lnn

ln

na

Z
rnlR































  

Which in turn gives 

)
02

exp()

0
2(

2.(2
3

)
02

1
()(20 a

r

a

r
r

a
rR






  

so that 

)
2

exp().2()
200

1
(

4

1

00

2
3

200 a

r

a

r 



   

 
---------- (25) 

In a similar way 

)(
4

3
21210 rRCos


   
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                   = )
2

exp(.
3

.)
1

(
4

3

00

2
3

0 a

r

a

r

Ra
Cos




    
 

---------- (26) 

Where a0 is the radius of the first Bohr orbit 

Substituting the values of (36) and 37in eq.(35) gives.       

 























 
 



 0 0

2
3

000

2
3

0

1
210,200

3
)

2

1
)(

2
exp()2.()

2

1
(

4

3
.

4 a

r

aa

r

a

r

a

eE
H  


 


2

00

23

0

]}][][).
2

exp( ddSinCosdrr
a

r

 
---------- (38) 

Now 

3

2
)

3

1

3

1
[

3
)(

0

3
2

0

2 


 
  Cos

CosdCosdSinCos  

 



2

0

2d  

  ..
3

.2
2

1 3
2

0

2
3

0

2
3

0 0

0

drre
a

r

a

r

a

a

r













 

  .0
44

0.
0

)2
30

1
.3

02

1
dxaxa

x
ex

aa








 







                 using 

0a

r
x   

 dxxex
a x

4

0

0 2
38



 


 

dxexedxx
a xx












0

5

0

40 2
38

 

 0
00 3342
38

12048
38

a
aa




  
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  
0

1
210,200 33.(2.

3

2
.

4

3

4
a

eF
H  


 

eFa03 ,   Now, the secular equation becomes 

                (nlm)       200          210          211         21,-1        

                200          -E         -3a0eE         -0           0               

                210         -3a0eE     -E(1)            0           0               =0 

                211           0             0              -E(1)        0  

                21,1           0             0                0          -E(1) 

It can be observed that the states 200,210 are affected by the electric field and the sates 211, 

21-1 remain unchanged. 

The eigen  states  corresponding  to  the eigen value 3eEa0 is (200-210)/2  and the eigen 

state for –3eEa0 is (200+210)/2 .   The energy along with the eigen states of the n=2 state of 

hydrogen atom in an electric field E along the Z-direction is illustrated in Fig.2.1. 

                                                                   0
0
1 3eEaE  2

1

210200 )(    

                                                                     E1
(0)(210,21-1) 

                                                                      E1
(0) –3eEa0

2

1

210200 )(                                                                         

                                                                  Fig. 9.2    

Figure 9.2 Energies and wave functions of the first excited state of hydrogen atom in an 

electric field E. 

This means that the hydrogen atom in the first excited state behaves as though it has a 

permanent dipole moment of magnitude 3a0eE with three different orientations-one state 

parallel to the external electric field, one state anti-parallel to the field and two states with 
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Zero component along the field.   The state’s211 and 21-1 do not posses dipole moments and 

therefore do not have a first order interaction with the field.  Since the ground state of all 

atoms and nuclei are very likely to be non-degenerate, it is expected that an atom or nucleus 

in the ground state do not possess a permanent electric dipole moment.  This means, atoms 

and nuclei in the ground state can possess electric charge, electric quadrupole moment, 

magnetic dipole moment etc., but not magnetic pole, electric dipole moment, magnetic 

quadrupole moment etc., 

9.4 SUMMARY: 

The Stark effect in a normal helium atom, which has two electrons, leads to the shifting and 

splitting of energy levels when exposed to an external electric field.  

The Stark effect in hydrogen refers to the shifting and splitting of the atom's energy levels 

when an external electric field is applied. Since hydrogen is the simplest atom, consisting of 

one proton and one electron, the Stark effect in hydrogen is easier to analyze compared to 

multi-electron atoms. Here are the key points of the Stark effect in hydrogen: 

9.5 TECHNICAL TERMS: 

 Normal helium atom, Stark effect in hydrogen atom. 

9.6 SELF ASSESSMENT QUESTIONS: 

1) Explain about the application to a normal helium atom. 

2) Briefly explain about the Stark effect in hydrogen atom. 

9.7 SUGGESTED READINGS: 

1) Quantum Mechanics- G. Aruldhas. (Prentice-Hall of India) 

2) Quantum Mechanics-Theory and applications- A.K.Ghatak and S.Lokanathan 

(Macmillan) 

3) Quantum Mechanics- Gupta, Kumar & Sharma. 

4) Principles of Quantum Mechanics- R.Shankar (Plenum press) 

5) Molecular Quantum Mechanics- P.W.Atkins. 

 

Prof. G. Naga Raju 



LESSON-10 

THE VARIATION METHOD AND WKB METHOD 

10.0 AIM AND OBJECTIVE: 

The primary goal of this chapter is to understand the concept of the variation method and 

WKB method. The chapter began with understanding of variation methods, Application to 

ground state of Helium atom, WKB method. After completing this chapter, the student will 

understand the complete idea about the variation method and WKB method. 

STRUCTURE: 

10.1 Introduction 

10.2 Variation Method 

10.3 Application to Ground State of Helium Atom 

10.4 The WKB Method 

10.5 Summary 

10.6 Technical Terms 

10.7 Self Assessments Questions 

10.8 Suggested Readings 

10.1 INTRODUCTION: 

Under some circumstances, perturbation theory is an invalid approach to take. This happens 

when the system we wish to describe cannot be described by a small perturbation imposed on 

simple system .in quantum electrodynamics, for instance, the interaction of quarks with the 

gluon field cannot be treated perturbatively at low energy because the interaction energy 

becomes too large. When faced with such systems, one usually turns into other 

approximation schemes, such as the variation methods and W.K.B approximation. 

 In the variation method, one has to make some guess of the wave function, they apply 

the variation principle to improve the guess of the wave function and obtain the upper bound 

for the ground state energy. Here we do not try to find a correction to already known 
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unperturbed eigen value and eigen function, but determine the total eigen values and eigen 

functions as close to the experimental values as possible through a variation calculation. 

10.2 THE VARIATION METHOD: 

(a)  The variation principle and theory: 

The Variation Principle: 

        The essential idea of the method is to evaluate the expectation value H  of the 

Hamiltonian operator H of the system with respect to a trial wave function. In order to 

explain the principle involved to evaluate the energy of the ground state, let us consider 

the wave equation as           

 EH              ………(1) 

Where the Hamiltonian operator H =  2
2

2m
 V (r) and E is the energy value. 

Multiplying eq.(2) with   and integrating over all variables 

 dEdEdH   ***

 

 

   …………(2) 

   if       is  normalized wave function 

 

 

The equations give the expectation value of the energy of the system in the state represented 

by the wave function . 

 The approximate wave function   can be obtained by variation principle.  In this approach, 

we guess a wave function and calculate the energy value .The energy of the system is correct, 

if the trial wave function is correct. In accordance with principle of variation, if the true 








d

dH
E

*

*

)3.....(*  dHE 
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energy is E0 and the correct wave function 0 , then any other acceptable wave function i , 

indicates which trial wave functions is close to the true wave function to give the best energy 

value. For a proof of the theorem, express the trial wave function as a linear combination of 

the true (but unknown) wave functions       

......,, 321     of H0 

 

………(4) 

Where 1, 2 , 3, ……… n      are the arbitrary parameters that can be varied to minimum 

in the energy .for our convenience, let us take  

=11+22   ……….(5) 

Substitute this in equation (2), we get 

 

 

 

(i.e)            
]2[ 2

*
2

2
22

*
1221

*
1

2
1  dddE  

 

)6....(..........2 2
*
2

2
22

*
2222

*
1

2
1  dHdHdH    

As we require the minimum value of E, it is necessary to minimize the energy E with respect 

to the parameter 1  and 2 

Differentiating with respect to 1, we get.     

)7..(].........22]

2[]22[

2
*
121

*
112

*
1

2
2

2
*
1211

*
1

2
1

1
2

*
121

*
11








dHdHd

ddEddE











 

In a similar way, differentiating with respect to 2,   we get  

nn .......
332211 













d

dH
E

))((

)()(

2211
*
22

*
11

2211
*
22

*
11
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)8..(].........22]

2[]22[

2
*
222

*
112

*
2

2
2

2
*
1211

*
1

2
1

2
2

*
222

*
11








dHdHd

ddEddE











 

in order to minimize E with respect to 1,  and 2, the 

 

 

and using the symbols 

 dHH jiij  *

          ………………(10) 

 djiij  *

 

Applying the equation (2.3.9) and (2.3.10) to (2.3.7) we get  

)11.....(..........0)()( 2121211111   EHEH  

Similarly, from the equation (2.3.8), we get after minor rearrangements for  

H12=H21and 12= 12 for convenience and symmetry. 

)12.....(..........0)()( 2222212121   EHEH  

Equation (11) and (12) together are called secular equations. 

In our case, we consider only the first two terms of the variation function , we can 

generalize to other term also. 

Equation 11 and 12 can be solved for ad provided the determinant for trivial solution is 

 

1212  EH                              =0 ……………(13) 

    2121  EH   2222  EH  

)9.........(..........0)()(
22

21









 
EE

1111  EH
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in a more general way, for n independent functions the secular equation in the form of 

determinant  is 

nn EHEH 111212 .............  .. 

nn EHEH 222222 .............   

              ……………………………………………                                               =      0       

                nnnnnn EHEH  .............22  

     

10.3 APPLICATION TO GROUND STATE OF HELIUM ATOM: 

Application to the ground (normal) state of the Helium atom 

As an example, we take up to obtain the energy of Helium atom in the ground state. 

Helium atoms consist of electrons of charge ‘-e’, and nucleus ‘+Ze’. 

The total potential is  

                              V=V1+V2+V3          ……………(14)   

Where the potential energies are given as: 

 

Neglecting the nuclear motion, the Hamiltonian is represented as 

1111  EH

2121  EH

11 nn EH 

12

2

2

2

1

2

1 ,,
r
e

r
Ze

r
ZeV 

 …………… (15) 



Centre for Distance Education                       10.6                   Acharya Nagarjuna University  
 

 

In atomic units, representing the Bohr radius  

 

The Hamiltonian becomes: 

Here   e2/a0   is the atomic unit of energy. 

In Atomic units H takes the form 

 

For the case of Helium, suppose one of the electrons is labeled 1, in the ground states, and the 

other labeled 2  is in the exited state 2.The ground state electron experiences the full 

attractive force of charge ‘+2e’ . 

The wave function is represented as  

Even though the electron 2 does not experience attractive force from nuclear, in choosing the  

 

trial wave  function for electron 2 is taken as  

These considerations show that good trial wave function must be of the form.  
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Where Z1 is between 1 and 2. 

Since 1
(0), 2

(0) are normalized wave functions for hydrogen like atoms,  must be a 

normalized wave function. 

The expression for H given in eq.(20) is now modified by adding and subtracting  

(Z'/R1+ Z'/R2) becomes 

 

Since  is assumed a normalized function, the variational energy E is given as 

Let 

 

Which is similar to two individual hydrogen-like atom wave function; whose energy is  

 

Now eq 25 becomes 
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Now the variational energy E of  eq  (23) becomes.  

 

Since  is normalized. 

 

And we write other integrals as. 

 

The first of the integral in the integral I, is 

 

Using the knowledge of gamma functions and other simple integrals. 

I = 2
2

1
2

11
2
1

2
2 2

11
1

16 dRRedRRe RZ
RZ

 


 ……(30)       

   
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Similarly, the second integral in I, becomes. 

Inserting these values of integral in eq29 

 
  )32.......(22 1

51

2

2

61

1 Z
Z

ZI 



 

Inserting these values of integral in eq29 

Now the remaining integral in eq.27 is 

  )33.....(
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The above integral can be evaluated using the knowledge of Legendre polynomial and 

electrodynamics which yields the value. 

Using the results of eq.32 and eq.27 We get 

 

to  minimise E with respect to variational parameter Z1, we set dE/dZ1=0. 

This gives  

   
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)37(...........16/5,

0
8
522

1

1
1





ZZWhere

ZZ
dZ
dE

 

Thus Z1is taken as the effective nuclear charge of helium. The factor  5/16  is called the 

screening factor. 

Substituting the Z1 in the energy equation (36) 

                  E  = (Z1)2 – 2Z1 (Z1 + 
16
5 ) + 

8
5  Z1   .a. 

= - (Z1)2a.u…………………..(37.1) 

=2 (Z1) 2 E1s (H)           2/1)(11  HorEE s       

 

which is ground state energy of hydrogen atom in the 1s orbital  

 =2(Z-5/16)2E1s (Ђ) 

    =2 (
16
27 )2E1sH           (Z =2 for Helium atom )  

   =2 (
16
27 )2  (-13.60 eV)               (E1= -13.60 eV)  

                          = -77.45 eV 

Which is the approximate ground state energy of helium atom. Further, the energy of the 

ground state He+  ion is 4E1s(H) = -54.40 eV. 

Hence the ionization potential of helium is   (-54.40) – (-77.45) = 23 eV. 

The experimental value is 24.58 eV.                                                                                 

By introducing more parameters in the trial function, the accuracy may be improved further. 

10.4 THE WKB METHOD: 

(a) Validity of the Method 

(b) Principle of the Method 

(c) Connection formula for penetration of a barrier. 
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Introduction: 

Wentzel-Kramers-Brillouin (WKB) approximation is a final type of time independent 

approximate calculations. It applies to only situations in which the potential energy is slowly 

varying function of position. Problems of one dimension and also of three dimensions 

reducible in one dimension (radial) are solved by this method. 

A slowly changing potential means the variation of potential energy V(r) slightly over several 

wavelengths (De Broglie waves) of the particles.  

The De Broglie wavelength associated with a particle moving with energy E in a region of 

potential V is 

 =  
p
h   =  

 2
1

)(2 VEm 

    ………(38) 

Since     
2
1   mv2= E - V 

m2v2= 2 m (E-V) 

p = mv =  )(2 VEm   

The propagation constant     

k = 

2   =(2m/  ) [E-V(x)]1/2  

P =  k  


p  =  

2            …………(39) 

Mathematically slowly varying potential can be expressed by the conditions         

d
dk

2

1


<< 1  

Substituting value of k from (39), we get  

  2/3)(2 VEm
x
Vm







<<1 or    
 )(4 VE

x
V








<<1       …………..(40) 
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This equation gives the validity of  W.K.B  approximation. 

Principle of the Method: 

W.K.B. method consists of in introducing an expression in the powers of. Thus Schrodinger 

equation (at least in some regions of space) is reduced in its classical limit. However, the 

method has wider range of applicability than the classical approximation, because this 

procedure can be carried out even in regions of space where classical interpretation is 

meaningless (region E < V is inaccessible to classical particle). 

Let  (x) be the wave function satisfying Schrodinger’s equation. 

  0)(2
22

2






 xVEm

x 
………(41) 

Let the solution of eqn. (2.3.41 ) be of the form 

/)( xiCe      …………(42) 

Where C is constant,  (x) is yet, an undetermined function of x, we have  

x
  = /)(xiCe  .

x
  

2

2

x
  = 


/)(xieC  . 








 2

x
 


/)(xieC  . 2

2

x
 

 …………..(43) 

now substituting 
x

  =  ’     and 
x

 '  =  ’’     equation (43) takes the form 

2

2

x
  = 



/)(
2

xieC  .  2' + 


/)(xieiC  . ''   ………..(44) 

Substituting values of   and 2

2

x
     from( 42) and (44) in (41), we get  





/)(
2

xieC  .  2' + 


/)(xieiC  . ''  +  )(2

2 xVEm 


/)( xiCe  = 0 

or 



/)(
2

xieC   )(2'''2 VEmi     =0  
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As  0/)( xiCe  , therefore above equation gives 

)(2''' 2 VEmi  =0   ……….(45) 

To get an approximate solution of (4.8), we apply W.K.B. method and hence expand  

 (x) in powers of    i.e., 

 )(
2

)()()( '
2

2

10 xxxx 


    (46) 

where the subscripts  ’s are independent of  . Let us assume that on account of the 

smallness of  , the first two terms in equation (46)  give a sufficiently good approximation to 

 . 

Differentiating equation (43), we get  

 )('
2

)()()(' 2

2
'

1
'
0 xxxx 


  

 )('
2

)('')('' 2

2
'
1

''
0 xxx 


  

Substituting  values of '  and  ''  from (47) in equation (45), we get 

i  [  )('
2

)('' 2

2
'
1

''
0 xx 


 ]- [  )('

2
)()( 2

2
'

1
'
0 xxx 


 ]2+ )(2 VEm  =0….(48) 

Collecting coefficients of various powers of  , we see that up to second order in  , we see 

the result is 

[ )(2 VEm  -     0]''''''['2"]' 20
2
11

2
1

2'
200

2
0   iii   ….(49) 

in order to that equation (49) may hold identically in  , the coefficients of each power of  

mustvanish separately. This requirement leads to the following leads series of equations.  

)(2 VEm  - 2
0' =0  (a) 

'
200 '2"  i =0    (b)             ….. 

20
2
11 ''''''  i =0  ( c ) 

(47) 

(50) 
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and so on.. 

These equations may be solved successively. That is the first equation,  0 in terms of  

(E-V), the second  equation defines 1,the third defines  2 in terms of  1 and  0 etc.. 

From equation (50), we obtain, 

0' = )(2 VEm    ………(51) 

integration of above eq. gives, 

dxVEm
x

x
 
0

)(20   ……..(52) 

where x0 is an arbitrary fixed value of x. 

From equation(50) we obtain  

'
0

''
0

1 2



i

  

Integration of above equation yields  

1
'

1 0
log

2
Ci

    ………….(53)     

Where C1 is a constant integration. This result is inconvenient if '
0

  is negative. Therefore 

keeping in mind the log of negative of function differs only by an imaginary constant from 

the logarithm of absolute value of the function. We replace eqn.53 by  

2
'

1 0
log

2
Ci

    …………(54) 

Where C2 is an arbitrary constant. 

Similarly  

     
dx

VEm

x
Vm

VEm

x
Vm x

x




























0 2

3

2

2
32

24
1

22
1   ………..(55) 

From equation 22 we see that 2 is represented as logarithm of '0 , therefore it is not, in 

general, small compared with 2 . Consequently 2  and 2  both must be retained. On the 
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other hand from eqn.(56) we see that 2  will be small whenever dv/dx is small and(E-V) is 

not too close to zero. Further it can be seen easily that the smallness of the higher 

approximations ( 2 , 2 ….etc) requires the smallness of all derivatives of V. Thus the W.K.B. 

approximation will be suitable in cases where V is a sufficiently smooth and slowly varying 

function of position. 

Thus the approximate W.K.B. solution of eqn. (45) may be expressed in the form 







  '

0 0
log

2
1  ix  ……..(56) 

Assuming constant C2 is absorbed in )(0 x  

Substituting value of )(x  from (6) in equation (42) and rearranging the result, we finally 

obtain the approximate solution app  of equation (44) in the form  

     


















 

x

x
app dxVEmiAVEmC

0

2exp2 4
1


   ………..(57) 

Where C remains arbitrary. The two solutions contained in (57) and differing in sign of the 

exponent are linearly independent, and hence the approximate general solution, according to 

W.K.B. approximation is  

        















































 

x

x

x

x
app dxVEmiBdxVEmiAVEmC

00

2exp2exp2 4
1


 ….. (58) 

Where  A and B are arbitrary constants. The positive exponential corresponds to a wave 

moving in the positive direction and the negative exponential corresponds to a wave moving 

in the negative direction. For the special case when V(x) is a constant, these reduce 

respectively to the plane waves. 



ipx

e  and  

ipx

e


 

The alternative from of equation (58) may be expressed as 

        
x

x
app dxVEmVEmC

0

2cos2 4
1
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Where C and ���are arbitrary constants. 

The approximate solutions (57) and (58) of the Schrodinger equation are usually called 

W.K.B.  -functions. 

Connection Formulas for penetration of a barrier 

W.K.B. method is applicable to the problems only where the potential function does not 

change too rapidly, because in the regions approximation considered do not apply. In the 

problems where the potential function vary slowly in some regions, so that W.K.B. method is 

inapplicable; we find the solution in the regions of inapplicability of W.K.B. method by some 

other methods and carry it to the regions where W.K.B. method is applicable. In order to 

connect these two solutions: we need for the connection formulas. 

To treat the problem of barrier penetration where W.K.B approximation is valid, we must 

find how to connect solutions in the region where V>E with those where  

 

Consider the potential barrier shown in Fig. 10.2 suppose the energy of particle is such that E 

= V at point x = a.. 

Classically, the particle should slow down to zero velocity at this point and then turn back. 

Quantum mechanically we know that the wave penetrates some distance further into the 

barrier. Obviously we cannot use the W.K.B. approximation in the region near x=a because 

when E=V, the condition for its applicability breaks down. 

Thus if we start with a given solution at some distance to the right of x = a  (in I region) say, 

  ~ 
x

a

dxP
p 

1

1

exp1               (59) 
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Where P1 =  EVm 2  

 From W.K.B. approximation method, we know that a sufficient distance to left of x =a (in 

region II), the approximate solution will be  

 ~ 

















x

a

x

a

dxP
i

p
BdxP

i
p
A


2

2

1

1

expexp  ……..(60) 

 where P2 =  VEm 2 and A and B are unknown constants . The values of A and B 

cannot be found By W.K.B. method alone, because they are determined by the nature of the 

solution in the region of inapplicability of W.K.B. method. To obtain the values of A and B 

we need an exact solution near x = a ; but it is too complex problem to be solved. If the 

W.K.B. method is applicable at small enough region x = a; then the potential function can be 

represented approximately by a straight line with in region, with slope equal to that of 

potential curve at the classical turning point x = a. as E = V, we can write,  

V- E = C (x-a), 

Where C is a constant equal to
axx

V











 . Thus in the region x = a , the Schrodinger equation 

reduces approximately to  

0)(2
22

2








axCm
x 

     ……..(61) 

This difficult equation can be solved by Bessel’s function The solution of the equation (61) is 

carried far enough from x = a, so that W.K.B. approximation becomes applicable. In this 

way, we may determine the constants A and B. Here we shall simply results without going 

through the complex procedure.  

Case (A) Barrier to the Right:  

Let V>E, to the right of x = a and P1 =  EVm 2 ; P2 =  VEm 2  

Let us consider that far to the right of x= a, the W.K.B. approximate solution, which is 

exponential, Viz., 
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







 

x

a

dxP
i

p
B


1

1 exp
1

         ………(61) 

for to the left to x= a , the connection formula states this solution approaches, 









 

x

a

dxP
i

p
B

4
cos 2

2
2




   ………..(62)  

Thus the connection formula may be expressed as  









 

x

a

dxP
i

p 
1exp

1
1  = 








 

x

a

dxP
i

p 4
cos2 2

2




 …….(63) 

Similarly, if the approximate solution is an increasing exponential to the right of x= a, the 

following connection hold. 









 

x

a

dxP
i

p 4
sin1 2

1


 









x

a

dxP
i

p 
2

2

exp1   ……..(64) 

Case (B) Barrier to the Left:  

For the solution which decays exponentially to the left of x=a, we obtain the connection 

formula.  









 

x

a

dxP
i

p 
2

2

exp1










x

a

dxP
i

p 4
cos2 2

2




 ………..(65) 

If the solution increases exponentially to the left, we obtain the following connection 

formula.  









 

x

a

dxP
i

p 4
sin1 2

1


 









x

a

dxP
i

p 
2

2

exp1   

10.5 SUMMARY:  

In this lesson, we develop another approximate method, which gives a direct solution of 

Schrodinger equation. This method, which is usually referred to as W.K.B. method is 

applicable to potentials which are such that the Schrodinger equation is separable to one 

dimensional equation,  
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further, the potential should be slowly varying we obtain the W.K.B. solution of the one 

dimensional schrodinger equation. Those solutions are used to describe the quantization 

condition which determiner the energy values corresponding to bound state problem. 

10.6 SELF ASSESSMENT QUESTIONS: 

1) Explain about the Variation method. 

2) Explain about the Application to ground state of Helium atom. 

3) Briefly explain about the WKB method. 

10.7 TECHNICAL TERMS: 

 The Variation method, Application to ground state of Helium atom,WKB method. 

10.8 SUGGESTED READINGS: 

1) Quantum Mechanics-G. Aruldhas. (Prentice-Hall of India) 

2) Quantum Mechanics-Theory and Applications-A.K.Ghatak and S.Lokanathan 

(Macmillan) 

3) Quantum Mechanics-Gupta, Kumar & Sharma. 

4) Quantum Mechanics-E.Merzbacher. 

 

Prof. G. Naga Raju 

 

 

 

 

 



LESSON-11 

PERTURBATION THEORY 

11.0 AIM AND OBJECTIVE: 

 Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a 

time-dependent perturbation v (.t.) applied to a time independent Hamiltonian H0.  The eigen 

functions and eigen state of this perturbed Hamiltonian is also time-dependent. 

We are interested in the following quantities: 

(i) Time-dependent expected value of some observable, with a specified initial state. 

(ii) The time-dependent amplitudes of those quantum states that are energy eigen kets 

in the unperturbed systems. 

The first quantity is important because it gives rise to the classical result of a measurement 

performed on a macroscopic number of copies  of the perturbed system.  The second quantity 

looks at the time-dependent probability of occupation for each eigen state, which is 

particularly useful in  laser physics, where one is interested in the populations of  different 

atomic states in a gas where a time-dependent electric field is applied.  

STRUCTURE: 

11.1 Time dependent perturbation: General perturbations 

11.2 Variation of constants 

11.3 Summary 

11.4 Technical terms 

11.5 Self-assessment questions 

11.6 Suggested readings 

11.1 TIME DEPENDENT PERTURBATION: GENERAL PERTURBATIONS: 

 The theory of time-dependent perturbation theory was developed by Dirac and is 

often called as Theory of variation of constant. Let us consider an unperturbed system with 

wave equation including the time. 
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11.2 VARIATION OF CONSTANTS:  

         Consider the time-dependent Schrodinger wave equation of an unperturbed 

system. 

     
t
n

inH





0

2
00 

     …………………….(1) 

      If the unperturbed system is conservative, then the Hamiltonian H(0) depends only on the 

space variable r but not on time t.  Now, for such a case, the total wave function  trn ,0  

including time is 

        
 



dtiE

nn

n

ertr
02

00 .,





  

=  
 


tniE

en

0

0 
    ……………………(2) 

Where  0
nE  is the energy of the stationary states and   rn

0  are eigen functions of the time-

independent wave equation. 

         rnnErnH 0000     ………….(3). 

The general solution of eq. (1) is a linear combination of solutions representing different 

stationary states. 

(i.e.)  
     trn

n
natr ,0,0   …………………(4.) 

If   rn
0  is normalized like the functions   trn ,0  forming an orthonormal set, then for each n 

value, |an|
2 represents the probability of the system in that particular stationary state.  The sum 

of the squares of the mixing Coefficients an is represented as. 

|an|
2=1  ………………………(5) 

since  12||** 
n

nana
n

nad  



Introductory Quantum Mechanics                  11.3                                    Perturbation Theory 

       Further |an|
2=1, an=1, when the unperturbed system is in the stationary state    trn ,0 , 

then all the coefficients ak(kn) in eq. (4) are zero. 

Now, consider the wave equation of a perturbed system. 

      tr
ti

trtrH ,
*

,, 



 …………(6) 

As the Hamiltonian depends on space variables r as well as on time t, the energy cannot be 

conserved and there can be no stationary states.  For solving eq.(6) by perturbation theory, let 

us  

take the Hamiltonian H(r,t) as sum of two terms,  the time-independent Hamiltonian H0(r) of the  

unperturbed system and a small perturbation H1(r,t) which depends on space variables r and 

time t. 

Now, the perturbed wave equation is. 

    
ti

HH









2
10 

   ………………(7) 

Whose general solution is of the form. 

     txxntnatxx .......2,1
0)(,..........2,1  …….(8) 

The Coefficients an(t) being functions of time  t. 

Substituting eq. (8) in eq. (6) gives 

         0100
nHnanHtna    

=-      
 

t
ta

it

ta

i
n

n
n

n 





 
0

0

22








………………(9) 

Again    
 

ti
H n

n 



0

00

2




 
 

Hence, we get from (8) 

     

t

ta

i
Hta n

nnn 


  )(

2
)( 001 


 

  …………….(10) 
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multiply eq.(10) by  *0
m  and integrating over the configuration space.  We  have 

          


 d
t

ta

i
dHta nm

n

n
n

n
mn

00010 ** )(
..

2
)(   





 

      
dHta

h

i
ta

t

ta
nm

n
nm

m 010 *

)(
2

)(
)(





 …………(11). 

with m=0,1,2,3,………….. 

Thus we obtained a set of first-order differential equations involving the functions am(t).  At 

the time t=0 a measurement of energy will lead to a particular value corresponding to one of 

the stationary states of an unperturbed system because it is only for stationary states that the 

energy has a definite value.  Let this be denoted as  0
lE  . 

This means at time t=0, the wave equation is represented by  0
l  but not by eq. (4) 

Hence, at time t=0,  

al(0)=1,     n=l=m. 

an(0)=0,     nl.                           ……(2.4. 12. .) 

 or      an(0)= mn 

Therefore, we can find solution of eq.(11) numerically but physically it cannot be done, as 

there are infinite equations.   

If H(1)(r,t) is small, the rate of change of the Coefficients 
dt

da  is small in the time interval t=0 

to t in which it acts and the relation (12) is valid throughout this interval.  We now solve the 

equation (11) by neglecting all terms except with n=l, retaining )(1 tla  on the right hand side, 

we have. 

 1)(
2)(

lll
l Hta

i

dt

tda




 …………………(13) 

Where              dlHlllH 01*01
  
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Rewriting equation 13 as 

 dtH
i

ta

tda
ll

l

l 1.
2

)(

)(




  

Integrating 

  
t

ll

t
l dtH

i

dt

tda

0

0

0

2)(




 

   (i.e.)     tH
i

ta lll
12

)(log



  

    or     




 tH

i
ta lln

12
exp)(




  ……………….(14). 

From eq.(14), we can understand how the Coefficient al changes during the time when the 

perturbation is acting, during the time, the wave function is 

     010 2
exp)( lllln tH

i
ta  






     (from eq.  8) 

           =        



  100 2

exp llll HE
h

i    (using eq. 2)    ……(15) 

Now, our aim is to consider the remaining set of equation in (11) and find the behaviour of 

the Coefficients am(t) with ml. 

Using the initial value of al(0)=1, on the R.H.S. of eq.2.4. 11. and neglecting all other an’s we 

obtain. 

      
dH
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i

dt
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m 010 *2)(
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i
HtE

h
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i
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00100 2
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2
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d 
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       



  tEE

h

i
H

h

i

dt

tda
mlml

m 001 2
exp

2)( 
   ………(16) 

With                 dlHmmlH 01*01
  

Let the field act during the time interval t=0 to t in which perturbation H(1) remains constant 

and it is zero before and after the field applied.   

Now, we integrate eq.(16) during the interval t from 0 to t. 

We have 
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   for ml. 

 
    
    

t

ml

ml
h

i

ml

h

EEi

ttEEe
H

h

i



























00

00
2

1

2

2






 

 

    

   





















00

2

1

00

ml

h

EEi

ml
EE

e
H

t
ml

 

=
 

ml

tmlie

h

mlH



 11 
     where 

   



00
lEmE
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


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

 111
)(


     ………………(17) 

Which is the first order perturbation theory. 

Now, we calculate the probability of the particle in the mth state in the following procedure: 

Probability = 2/)(/)()(* tmatmatma    ……………(18) 
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                          =   2|1|
2
1

11
2
1

mlHXtmlietmlie
ml 






 





  


 

 
 2/2.

2

2|1|

2
42|)(| tmlSinmlH

ml
tma 

 
   ……………(19) 

Let  us plot y against x=ml as shown in Fig. 11.1.  It can be observed that the most important 

contributions to the transition probability come from those final states with energy Em which 

are very close to and centered around the initial state of energy El.  The full width of the 

curve at half maximum  




~

2

E
   (20) 
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mltSin
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
  

 

 

 

 

 

 

Fig. 11.1 

If we interpret E as the uncertain by in energy and t() is the certainty in time ‘t’, the 

equation(20) then implies that  

E t ~ 2ħ 

This can be explained more clearly as below:   for maximum value of Y  we get. 
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 

2

2
.

2
1











tml

ml




     neglecting higher powers of t. 

4

2t
  

The highest peak value is 
4

2t  , which can be easily observed from the Fig. (1). 

The peak values we get, when Y is zero. 

(ie.)  
 

0
2

2
2


ml

tmlSin




 

       (ie.)   
t

n
ml

 2
   where n=0, 1,2,3 

This means the height of the peak values is proportional to t2 and its width decreases 

inversely as t.  Since the area under the curve is proportional to t, the probability of time 

during the system in one or another state is proportional to t, which implies the probability 

per unit time. 

11.3 SUMMARY: 

This lesson explores Time-Dependent Perturbation Theory in quantum mechanics, which 

deals with systems subjected to external forces or perturbations that vary with time. The key 

concepts discussed include. Perturbations are small changes in the system that modify its 

Hamiltonian, and when these changes vary with time, they are described by time-dependent 

perturbations.The total Hamiltonian of a system under perturbation. The goal is to find how 

the system evolves in time under the influence of this perturbation, typically using 

perturbation theory to approximate the effects of V(t)V(t)V(t) on the system's state. The 

variation of constants method is used to solve the time-dependent Schrödinger equation with 

a perturbation.The time-dependent wavefunction can be written as a sum of unperturbed 

states with time-dependent coefficients. Using this method, the time evolution of the 

coefficients cn(t)c_n(t)cn(t) can be determined by solving the time-dependent differential 

equations derived from the Schrödinger equation.This approach provides an approximation 

for the state of the system, typically expanding in terms of the strength of the perturbation. 
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 In essence, this lesson addresses how to approach quantum systems subject to time-

dependent external influences, using perturbation theory and solving for the system's 

evolution through the variation of constants. 

11.4 TECHNICAL TERMS: 

 Time dependent perturbation theory, variation of constants. 

11.5 SELF-ASSESSMENT QUESTIONS: 

1) Outline the theory of time-dependent perturbation theory. 

2) Give a brief note on the variation of constants. 

11.6 SUGGESTED READINGS:  

1) Quantum Mechanics-R.D.Ratna Raju. 

2) Principles of Quantum Mechanics-R.Shankar (Plenum Press). 

3) Molecular Quantum Mechanics-P.W.Atkins. 

 

Dr. S. Balamurali Krishna 



LESSON-12 

EINSTEIN TRANSITION PROBABILITY 

12.0 AIM AND OBJECTIVES: 

 The aim of this lesson is to introduce the concept of transition to the continuum and 

the Einstein transition probabilities in quantum mechanics. Students will understand how a 

quantum system interacts with an electromagnetic field, leading to transitions between 

discrete states and the continuous spectrum. Additionally, they will learn how to calculate 

transition rates and probabilities using Einstein's theory. By the end of this lesson, students 

should be able to: Understand the concept of transition to the continuum, which occurs 

when a quantum system, initially in a discrete energy state, interacts with an external field 

and transitions to a continuous energy spectrum. Apply Einstein transition probabilities to 

calculate the likelihood of these transitions occurring between discrete and continuum states. 

Derive and understand the selection rules governing these transitions, including the 

conditions for allowed and forbidden transitions. Gain familiarity with the practical 

applications of these concepts in atomic, molecular, and solid-state physics, particularly in 

processes such as absorption, emission, and ionization. 

STRUCTURE: 

12.1 Transition to the Continuum 

12.2 Einstein Transition Probabilities 

12.3  Summary 

12.4  Technical Terms 

12.5 Self-Assessment Questions 

12.6  Suggested Readings 

12.1 TRANSITION TO THE CONTINUUM:  

We have so far considered transition between states and m and l. We shall now consider 

transitions from a discrete state m to a continuum of states around El, where the densities of 

state are (m). When the final states are densely packed forming a continuum, we can replace 

the summation by an integral. In order to obtain the explicit expression for transition 
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probability, let us assume that the system is enclosed in a cubical box. The stationary states of 

the system are discrete, but separated in energy by an interval, which is inversely proportional 

to the volume of the box.   

If we consider a box of infinite size, the levels within the energy interval increases and merge 

into a continuum. 

Now the transition probability for mth state is given as. 

   
ml

tmlSin
mlHtmaT

22

2/2.42|1|2|)(|





  

In this, the probability is largest for the states whose unperturbed energy  0
mE  is close  to  0

lE .  

As the levels are closer, they form a cluster around    00
lEmE   and all the levels in the cluster 

nearly represent the same physical properties.  Summing all levels in the cluster and we get 

the total transition. 

Probability (i.e.)  |am(t)|2 

(i.e.) dEmtmatma )(|)(|2|)(|   

Where (m) is the density of final states and (m)dE is the number of such states in the range 

dE. 

Instead of considering transition to a particular state, we may consider transition to group of 

states of nearly equal energies.  The probability of transition per unit time is now obtained, by 

considering the central peak of 
 
ml

tlmSin

2

2/24




 as the domain of integration in the interval  

(-,). 
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on integration, we get. 

             P(t)=   tmH ml  2).(||
1 21


 

Transition per unit time is 

  )(||
2 21 mH ml 


  

Which has wide application in quantum mechanics. 

This is known as Fermi’s Golden Rule.  It may be concluded that the transition probability 

per unit time(i) 

is proportional to   2|1| mlH . 

Is proportional to (m) density states. 

Is non-zero only between continuum states of the equal energy. 

12.2 EINSTEIN TRANSITION PROBABILITIES: 

Spontaneous emission, absorption and induced emission of radiation were satisfactorily given 

by Direct. In this we discuss the Einstein Coefficients of emission and absorption of 

radiation. 

The transition taking place from a non-degenerate stationary state of energy Ek to another 

degenerate stationary state El(Ek>El) causing an emission or absorption of radiation of 

frequency, is given, according to Bohr’s frequency rules, as  


lEkE

kl


   ……………………(2.4.20) 

The probability that a system in the lower energy state absorb a quantum of radiation energy 

and goes to the higher state in unit time is. 

 klklB   

Bnm is known as Einstein’s Coefficient of absorption. Let Nl atoms are present in a state at 

any instant of time then number of transition per second is  
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 klpklBlN   

The probability of emission  consists of two parts (i.e.) one part independent of the radiation 

density and the other proportional to the density. 

Since the transition from the upper state to lower state energy causes an emission of radiation 

of energy is. 

 lkplkBlkA   

in which Ak->l is the Einstein Coefficient of spontaneous emission BK->lis the Einstein 

Coefficient of induced emission. 

Now, let the number of atoms in this state is denoted by Nk then the number of reverse 

transition is. 

 klplkBlkAkN (  

The emission and absorption must be equal at the thermal equilibrium. 
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From quantum statistical mechanics. 
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Equating (1) and (2), we get 
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The radiation energy, according to Planck’s law, is                     
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Hence Einstein Coefficients are related by 

         Bn->m=Bm->n 

and Alk= kl
kl B

C
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....
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12.3 SUMMARY:  

 This lesson focuses on two key topics in quantum mechanics: the transition to the 

continuum and Einstein transition probabilities. 

1) Transition to the Continuum: 

o In quantum systems, when an electron absorbs enough energy (for example, from 

a photon), it can transition from a discrete bound state to a continuum of unbound 

states, known as ionization. 

o This phenomenon is important in understanding processes like photoionization, 

where an atom or molecule absorbs a photon and an electron is ejected, entering 

the continuous spectrum. 

2) Einstein Transition Probabilities: 

o Einstein transition probabilities describe the likelihood of quantum transitions 

between energy states induced by electromagnetic radiation (absorption or 

emission). 

o These probabilities are derived from the interaction between the system and the 

electromagnetic field and depend on factors like the dipole matrix elements and 

the frequency of the radiation. 

o The lesson covers Einstein’s relations for the transition rates in both absorption 

and spontaneous emission, and explains how these are related to the lifetime of 

excited states and the intensity of radiation. 

 In addition, the lesson addresses selection rules, which determine the allowed and 

forbidden transitions based on symmetries and conservation laws. These rules help to predict 

the outcome of radiation interactions with quantum systems. 
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 In summary, the lesson provides students with the theoretical framework for 

understanding how transitions occur between bound and unbound states in quantum systems, 

along with practical methods for calculating transition rates using Einstein's formalism. 

12.4 TECHNICAL TERMS: 

 Transition to the Continuum, Fermi golden rule. 

12.5 SELF-ASSESSMENT QUESTIONS: 

1) Discuss Einstein transition probabilities. 

2) State and probe Fermi-Goden rule for the rate of transitions induced by a constant 

3) Perturbation. 

4) Calculate the transition probability per unit time and per unit of radiation.   

12.6 SUGGESTED READINGS: 

1) Quantum Mechanics-R.D.Ratna Raju. 

2) Principles of Quantum Mechanics-R.Shankar (Plenum Press). 

3) Molecular Quantum Mechanics-P.W.Atkins. 

 

Dr. S. Balamurali Krishna 

 



LESSON-13 

APPROXIMATION EXPRESSIONS 

13.0 AIM AND OBJECTIVE: 

The aim of this lesson is to explore the behavior of a charged particle in an electromagnetic 

field under different approximations, specifically the adiabatic approximation and the sudden 

approximation. Students will learn how these approximations influence the particle’s 

dynamics and gain insight into how the system responds to time-varying electromagnetic 

fields.By the end of this lesson, students should be able to: 

1) Understand the dynamics of a charged particle in an electromagnetic field, 

including the forces exerted on the particle by both electric and magnetic fields. 

2) Apply the adiabatic approximation to systems where the external parameters (such 

as the magnetic field) change slowly over time, and explain the resulting effects on 

the particle’s motion. 

3) Use the sudden approximation to describe systems where the external parameters 

change abruptly, and understand the implications for the particle's energy and state. 

4) Compare and contrast the adiabatic and sudden approximations in terms of their 

assumptions and applications to quantum and classical systems. 

STRUCTURE: 

13.1 A Charged Particle in an Electromagnetic Field 

13.2 Adiabatic Approximation 

13.3 Sudden Approximation 

13.4 Summary 

13.5 Technical Terms 

13.6 Self-Assessment Questions 

13.7 Suggested Readings 

13.1 A CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD: 

 In order to apply the time-dependent perturbation theory to the charged particle, the effect of 

electric and magnetic fields on the particle must be investigated. 
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        The electromagnetic force on a particle of charge e, and mass m moving with velocity v in an 

electromagnetic field characterised by electric field E and magnetic field B (or scalar potential  and 

vector potential A) is 

c

vxB
ecEF   

c being speed of electromagnetic waves. 

<n|n>+<n|n>=0 

<n|n>=i(t), real. 

For new  eigen function 
(.)' tr

nn e  . 

We have        <n
’|n>=I(+). 

Choosing  suitably, we can make this vanish.  Hence 
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Let the System be initially at state m and the time variation is small: thus 
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With the above approximation this equation shows that the probability amplitude for a state other than 

the initial states oscillates in time and show no steady increase over long periods of time even though 

H changes by a finite amount. 

13.2 ADIABATIC APPROXIMATION: 

In the adiabatic case, we expect on physical grounds that solutions of the Schrodinger equation can be 

approximated by means of stationary eigenfunctions of the instantaneous Hamiltonian, so that a 

particular eigenfunction at one time goes over continuously into corresponding eigenfunction at a later 

time. 
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If the equation 

)()()()( ttEttH nnn    

can be solved at any time we assume that a system that is discrete non-degenerate state  0
m  with 

energy  0
mE  at t=(0) is likely to be in the state  t

n  with energy  t
nE  at time t, provided that H(t) varies 

very slowly with time. 

The wave function  obeys the time-dependent schrodinger equation. 
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Multiplying by   we has 
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To evaluate <n|l>, we have 
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To find <n|n>, on differentiating <n|n>=1 w.r.t.   time. 

13.3 SUDDEN APPROXIMATION: 

The sudden approximation consists of the change in Hamiltonian discontinuous on different times. 

Suppose that       H=H0          for t < 0 

and                           H=H1          for t  > 0 

       Then                nnn EuH 00      for t < 0 

nnn EuH 0     for t  > 0 


1niE

n
e

n eua   

and                              


1niE
t

e
t eua 

  

Equating the two solutions at t(0)=0. 

  ne
e

nt uuab |  

The sudden approximation consists in using above equation when the change in the Hamiltonian 

occupies a very short finite interval of time t0.  Suppose that  

                      H=H0         for t < 0, 

                      H=H1         for t > 0 

and               H=H1         for 0 < t < t0. 

The intermediate Hamiltonian Hl which is taken constant in time, has a complete set of energy eigen 

functions: 

 Hl Wk = Ek Wk 

The exact solution can be expanded in terms of the u’s with constant coefficients. 
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Application of the continuity condition at t=0 gives 
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and at t=t0 gives 

  /exp|  tEEikCb k
k

kt    

    nktEEika tk
n

n |exp| /0   

When t0=0, the exponential is equal to unity and be is given by (1). 

The sudden approximation will be best only when t2 is small.  So on expansion exponential term in 

above equation. 
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Thus error in sudden approximation is proportional to t0 for small t0.  If H1 depends upon time, then 

dtf H 0
0 1  can be taken in place of H1t0. 

If H1=H0 then 

mHHk
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

 

This can be used even when (h-H0) is not small as compared to H0 taking t0 small. 

13.4 SUMMARY: 

This lesson examines the motion of a charged particle in an electromagnetic field, considering two 

important approximations: the adiabatic approximation and the sudden approximation.Charged 

Particle in an Electromagnetic Field: The motion of a charged particle under the influence of both 

electric and magnetic fields is governed by the Lorentz force law. This force combines the effects of 

the electric field E and the magnetic field B, influencing the particle's trajectory. 
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The adiabatic approximation is used when the external fields (such as the magnetic field) change 

slowly with time compared to the particle’s response time. In this approximation, the system remains 

in an instantaneous eigenstate of the Hamiltonian as it evolves. The particle’s energy changes 

smoothly as the system’s parameters evolve. For example, in a magnetic field that changes slowly, the 

charged particle’s quantum states (such as Landau levels) will adapt adiabatically to the changing 

field, preserving their quantum numbers. This approximation is particularly useful in processes where 

the time scale of the external perturbation is much longer than the time scale of the particle’s 

dynamics.The sudden approximation applies when the external parameters (such as the magnetic 

field) change abruptly, much faster than the particle can adjust.In this case, the system’s wavefunction 

does not follow the instantaneous eigenstate of the new Hamiltonian. Instead, it is assumed that the 

system retains its initial quantum state immediately after the change, with the energy adjusting 

according to the new conditions. This approximation is often used in processes like sudden changes in 

potential, where the particle's state "jumps" to a new configuration due to the rapid change in the 

environment.The adiabatic approximation assumes slow changes and smooth evolution of the system, 

leading to a gradual transition between states. The sudden approximation, on the other hand, assumes 

rapid changes and immediate response, where the system does not have time to adapt. These two 

approximations provide useful tools for solving different types of problems involving time-dependent 

fields, depending on how fast the external parameters change in comparison to the system's dynamics. 

In summary, the lesson discusses how a charged particle behaves in electromagnetic fields under 

different temporal conditions, emphasizing the roles of the adiabatic and sudden approximations. 

These approximations allow for simplified models that make it possible to predict the behavior of the 

system under various external influences, with practical applications in both classical and quantum 

systems. 

13.5 TECHNICAL TERMS: 

 Adiabatic Approximation, Sudden Approximation. 

13.6 SELF-ASSESSMENT QUESTIONS: 

1) Write notes on Adiabatic approximation.  

2) Sudden approximation. 

13.7 SUGGESTED READINGS: 

1) Quantum Mechanics  - Gupta, Kumar & Sharma. 

2) Advanced Quantum Mechanics – Rajput. 

3) Quantum Mechanics – R.D.Ratna Raju. 

4) Principles of Quantum Mechanics – R.Shankar (Plenum Press). 

5) Molecular Quantum Mechanics – P.W.Atkins. 

Dr. S. Balamurali Krishna 


