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FOREWORD

Since its establishment in 1976, Acharya Nagarjuna University has been
forging ahead in the path of progress and dynamism, offering a variety of courses
and research contributions. I am extremely happy that by gaining ‘A+’ grade from
the NAAC in the year 2024, Acharya Nagarjuna University is offering educational
opportunities at the UG, PG levels apart from research degrees to students from
over 221 affiliated colleges spread over the two districts of Guntur and Prakasam.

The University has also started the Centre for Distance Education in 2003-
04 with the aim of taking higher education to the door step of all the sectors of the
society. The centre will be a great help to those who cannot join in colleges, those
who cannot afford the exorbitant fees as regular students, and even to housewives
desirous of pursuing higher studies. Acharya Nagarjuna University has started
offering B.Sc., B.A., B.B.A., and B.Com courses at the Degree level and M.A,,
M.Com., M.Sc., M.B.A,, and L.L.M., courses at the PG level from the academic
year 2003-2004 onwards.

To facilitate easier understanding by students studying through the distance
mode, these self-instruction materials have been prepared by eminent and
experienced teachers. The lessons have been drafted with great care and expertise
in the stipulated time by these teachers. Constructive ideas and scholarly
suggestions are welcome from students and teachers involved respectively. Such
ideas will be incorporated for the greater efficacy of this distance mode of
education. For clarification of doubts and feedback, weekly classes and contact
classes will be arranged at the UG and PG levels respectively.

It is my aim that students getting higher education through the Centre for
Distance Education should improve their qualification, have better employment
opportunities and in turn be part of country’s progress. It is my fond desire that in
the years to come, the Centre for Distance Education will go from strength to
strength in the form of new courses and by catering to larger number of people. My
congratulations to all the Directors, Academic Coordinators, Editors and Lesson-
writers of the Centre who have helped in these endeavors.

Prof. K. Gangadhara Rao
M.Tech., Ph.D.,
Vice-Chancellor I/c
Acharya Nagarjuna University.
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Course Objectives:

+¢ Introduction of Quantum Mechanics and the Schrodinger equation
+ To acquire mathematical skills require to develop theory of quantum mechanics

++ To develop understanding of postulates of quantum mechanics and to learn to apply
them to solve some quantum mechanical systems

+ To offer systematic methodology for the application of approximation methods to
solve complicated quantum mechanical systems

UNIT-I (Schrodinger Wave Equation and One Dimensional Problem)

Why QM? Revision; Inadequacy of classical mechanics; Schrodinger equation; continuity
equation; Ehrenfest theorem; admissible wave functions; Stationary states. One- dimensional
problems, wells and barriers. Harmonic oscillator by Schrodinger equation.

Learning Outcomes:

e Students will learn the difference between classical mechanics and quantum
mechanics.

UNIT-I1 (Linear Vector Spaces and Operators)

Linear Vector Spaces in Quantum Mechanics: Vectors and operators, change of basis,
Dirac's bra and ket notations. Eigen value problem for operators. The continuous Hermitian,
unitary, spectrum. Application to wave mechanics in one dimension. projection operators.
Positive operators. Change of orthonormal basis, Orthogonalization procedure, uncertainty
relation.

Learning Outcomes:

e Students will learn the mathematical formalism of eigen values, eigen states of wells
and barriers and unitary operators, hermitian operators, which form the fundamental
basis of quantum theory.

UNIT Il (Orbital Angular Momentum)

Angular momentum: Commutation relations for angular momentum operator, Angular
Momentum in spherical polar coordinates, Eigen value problem for L2 and L2, L + and L
operators Eigen values and eigen functions of rigid rotator and Hydrogen atom



Learning Outcomes:
e Learn commutations relations for angular momentum operator and its applications in
daily life.

e Application to rigid rotator, hydrogen-like atoms and angular momentum operators
will teach the students how to obtain eigen values and eigen states for such systems
elegantly.

UNIT IV (Time-Independent Perturbation Theory)

Time-independent perturbation theory; Non-degenerate and degenerate cases; applications to
(a) normal helium atom (b) Stark effect in Hydrogen atom. Variation method. Application to
ground state of Helium atom, WKB method.

Learning Outcomes:

e To understand the concepts of time-independent perturbation theory and their
applications to physical situations.

e Studying the applications of Non-degenerate and degenerate cases in perturbation
theory

e Learning the variation and WKB methods

UNIT V (Time Dependent Perturbation Theory)

Time Dependent Perturbation: General perturbations, variation of constants, transition into
closely spaced levels -Fermi's Golden rule. Einstein transition probabilities, Interaction of an
atom with the electromagnetic radiation. Sudden and adiabatic approximation.

Learning Outcomes:

e Students will learn how to use perturbation theory to obtain corrections to energy
eigen-states and eigen-values when an external electric or magnetic field is applied to
a system.

e Learning the significances of Fermi's Golden rule.

e To teach the students various approximation methods in quantum mechanics.

Course Outcomes:

o,

+«+ Understand historical aspects of development of quantum mechanics.
++ Understand and explain the differences between classical and quantum mechanics.

+«+ Understand the central concepts and principles in quantum mechanics, such as the
Schrodinger equation, the wave function and its statistical interpretation, the
uncertainty principle, stationary and non-stationary states, wells and barriers,
harmonic oscillator, as well as the relation between quantum mechanics and linear
algebra including understanding of linear vector spaces.



¢+ They will master the concepts of angular momentum and spin, as well as the rules for
quantization and addition of these. Hence they will be able to solve the complex
systems by approximation method.

Text and Reference Books:

1) Eugen Merzbacher, Quantum Mechanics, Wiley.

2) LI Schiff, Quantum Mechanics (Mc Graw-Hill).

3) B Crasemann and JD Powell, Quantum Mechanics (Addison Wesley).
4) AP Messiah, Quantum Mechanics.

5) JJ Sakural, Modem Quantum Mechanics.

6) Mathews and Venkatesan Quantum Mechanics.

7) Quantum Mechanics” by R.D. Ratna Raju.

8) Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State Physics by
S.P. Kuila, Books and Allied, Kolkata.
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b)

d)

b)

Answer ALL Questions
All Questions Carry Equal Marks

Explain about the Schrodinger wave equation.
Explain about the One-dimensional problems.

OR
Explain about the Stationary states.
Briefly explain about the admissible wave functions.

Explain about the change of basis in linear vector spaces.
Write a note on vectors and operators

OR
Explain about Dirac’s bra and ket notations.
Write about the Change of orthonormal basis.

Write about the Eigen values and Eigen functions of rigid rotator and hydrogen
atom.
Explain about the Angular momentum in spherical polar coordinates.

OR

Write about the communication relations for angular momentum operator.
Explain about the Eigen value for L? andL,.

Briefly explain about the Variation method
Explain about the Time-independent perturbation theory for Non degenerate system.

OR

Briefly explain about the WKB method.
Explain about the Application to ground state of Helium atom.

Explain about the Time dependent perturbation theory.
Write a note on Fermi’s Golden rule.

OR

Describe the Interaction of an atom with the electromagnetic radiation.
Describe the Sudden and adiabatic approximation.
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LESSON-1
SCHRODINGER EQUATION

1.0 AIM AND OBJECTIVES:

The primary goal of this chapter is to understand the concept of Schrodinger Equation. The
chapter began with understanding of Introduction of Quantum Mechanics and the
Schrodinger equation and to acquire mathematical skills, require to develop theory of
quantum mechanics. After completion of this lesson student should have the knowledge of

fundamentals of Quantum Mechanics.
e Introduction of Quantum Mechanics and the Schrodinger equation.

e To acquire mathematical skills, require to develop theory of quantum mechanics

STRUCTURE:

1.1 Why QM

1.2 Inadequacy of Classical Mechanics

1.3 Schrodinger Equation

1.4 Continuity Equation or Equation of Continuity or Probability of Current Density
1.5 Ehrenfest’s Theorem

1.6 Summary

1.7 Technical Terms

1.8 Self Assessment Questions

1.9 Suggested Readings

1.1 WHY QM:

In 1900, Plank introduced a revolutionary hypothesis known as Plank’s Hypothesis,
according to which every radiating atom in a solid emits energy only discretely in quanta, the
energy of an individual quantum being equal to hv.

E, = nhv
where n is an integer and h is Plank’s constant = 6.625X1073%].sec
By the aid of this hypothesis, Plank was able to explain law of distribution of energy

in the spectrum of black body. This theory was given by Plank in historic paper titled

“Theory of law of distribution of energy in a normal spectrum” presented before the Berlin
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Academy of Sciences on Dec 14, 1900. This day, in fact, may be considered as the birthday

of Quantum Mechanics.

After the intension of de Broglie’s hypothesis of matter waves (1924), it develops the

new type Physics. It is called Quantum Mechanics.

The development of Quantum Mechanics is based on the scientists, namely Erwin
Schrodinger, Werner Heisenberg, Max Born, Paul Dirac etc. Quantum mechanics classifies

the all limitations of Bohr’s Theory.
The inadequacy of Classical mechanics led to the development of Quantum
Mechanics.

1.2 INADEQUACY OF CLASSICAL MECHANICS:

The development of classical mechanics is based on Newton’s three laws. These laws
included the concepts of absolute mass, absolute space and absolute time. The classical
mechanics explains correctly the motion of celestial bodies like planets, stars and
macroscopic as well as microscopic terrestrial bodies moving with non-relativistic speeds.

The inadequacies of classical mechanics are

1) It does not hold in the region of atomics dimensions i.e., it cannot explain the non

relativistic motion of atoms, photons etc.
2) It could not explain the stability of atoms.
3) It could not explain observed spectrum of black body radiations.

4) It could not explain the origin of discrete spectra of atoms since according to

classical mechanics the energy changes are always continuous.

In spite of this classical mechanics could not explain a large number of observed
phenomenon’s like Photoelectric Effect, Compton Effect, Raman Effect etc. The inadequacy

of Classical mechanics led to the development of Quantum Mechanics.

1.3 SCHRODINGER EQUATION:

Schrodinger’s Time Independent and Time Dependent Wave Equations
We know that the total energy is the sum of kinetic and potential energies.

T=K.E.+P.E.

2
Where K.E. = s—m here p is momentum and P.E. = V(r)

pZ
" T =— VvV
2m + V()
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2 -
Hermitian Operator H= E—m + V(r)
We know that HY = EY¥

Where ¥ is wave function, H is Hermitian Operator and E is energy.

2
By substituting Hamiltonian value H = zp_m + V(r), we get

<p—2 + V(r)) ¥ = E¥

2m

-n?vz
+V(r) |¥Y= E¥ or
2m

A T
——+ V()Y = E¥Y
2m
Multiplying by negative sign throughout the equation and then dividing with

2 2m
\% ‘P+h_2(E_V)lp:0

This equation is known as Schrodinger Time Independent Wave Equation.

For a free particle, potential energy is zero i.e., P.E. = 0 then the equation is reduced to
2m
VY +—E¥Y =0
h
We know that HY = E¥

2
We have Hamiltonian value H = zp_m + V(r) and Energy E = ih %
P’ _ i 0¥
= (E + V(r)) Y =in P or
on replacing momentum p, we have

—h%y2

+ V() lp—'halp
2m r P
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here V¥ is a function of (r, t) where r = (x,y,z) and t is time.

This equation is called Time Dependent Schrodinger Wave Equation.

1.4 CONTINUITY EQUATION OR EQUATION OF CONTINUITY OR
PROBABILITY OF CURRENT DENSITY:

We have Schrodinger wave equation for a free particle.

V2P + Zh—T E¥Y =0  (for free particle V=0)

On rearrangement, we have

) 2m
V¥ = ——EY¥

72
hZ

or ——V?¥Y = E¥Y
2m
[ S O B

or — VY = in S| E = i (D)

The complex conjugate of eq. (1) is

N
-5V Y = —ih n e (2)

Pre-multiplying eq. (1) with ¥ and post multiplying eq. (2) with ¥ on both sides.

7 yro2ay ey P
S N |
_EV Y'Y = —ih dth (4)

from eq. (3) and eq. (4), we can write

2 .
_ [P*V2Y¥ — V29* Y] = i/ | P oF + M g
2m ot ot

or — [PVRY - V2] = i (PTP)
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9 ) = — M ppry2y gy
or = (') = — = [VVRP - V2P

dp
—+V-s=0
6t+ S

Wherep = ¥ Wand V- s = — = [¥"V2¥ — V29" ]

This equation is known as Equation of Continuity. Here p is probability of density and s

is probability of current.

] . . e o
fVv-s=0 thena—i = 0. Here p is constant i.e., probability is constant in time and then

such states are called Stationary States.

1.5 EHRENFEST’S THEOREM:

The theorem states that the average motion of a wave packet agrees with the motion

of the corresponding classical particle.

In simple mechanics F = —VV
F= % Where p is linear momentum
L)~ L (e p¥) da(+ (p) = [ PP do)

d .
- = f [¥* (—iAV)P]dt

= —in [[SYVE L (V)] de

dy”
dt

= [ |-in

v —inP'V | do
dt

LAY W

lha = —EV ¥ +V(I’)lP

and it’s complex conjugate is

AL L, *
m __EV Y +V(r)¥Y

—ih
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@— ﬁ 2\u* * _ * _ﬁ 2
= [ - =029+ VO | VY - WY |- =72 + V()Y fde
2
= I [ [V - Y (W) + [ [PV - ¥V V() W]de
Taking first term
2 22

— L[ [V VY — (V)] de = [ 2 [V VY — PV (V2)]de
— _hz 2\u* _ * 2
=——[[V?¥'V¥ — ¥V (VD)) de

U(szu —uV2v)dr = j (uVv — vVu)ds| [u = ¥*; v = V¥]

2
N % j f (P72 — (VH)V']ds

For the larger values of P, this integral will be vanished because W is finite.

% = [[VIDP'VY — ¥V (V(r)¥)]dt

= [ [V VY — ¥'VVY¥ — ¥*VV¥]dr
= ] (=P*VV¥) dt

d(p)

~F =-VV

Therefore, the quantum mechanical description of average motion of particle is identical with

the classical description of the particle. It proves the Ehrenfest’s theorem.

1.6 SUMMARY:

In this lesson student will learn how quantum mechanics has been developed and the
inadequacy of classical mechanics. Subsequently in Quantum Mechanics Schrodinger Wave
Equation was developed. Student has learned the continuity equation in quantum mechanics

and he has learned the importance of Ehrenfest theorem.
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1.7

1.8

1.9

TECHNICAL TERMS:

Quantum mechanics, Schrodinger equation, continuity equation, Ehrenfest theorem.

SELF-ASSESSMENT QUESTIONS:

1) What is the failure of Classical Mechanics?

2) Derive One Dimensional Schrodinger Wave Equation.
3) Derive Continuity Equation.

4) Explain Ehrenfest Theorem.

SUGGESTED READINGS:

1) Eugen Merzbacher, Quantum Mechanics, Wiley.

2) LI Schiff, Quantum Mechanics (Mc Graw-Hill).

3) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).

4) A P Messiah, Quantum Mechanics.

Prof. M. Rami Reddy



LESSON-2
ONE-DIMENSIONAL PROBLEMS

2.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of One-dimensional problems.
The chapter began with understanding of admissible wave function, Stationary States, One-
Dimensional Problems, Wells and Barriers, Harmonic Oscillator by Schrodinger Equation.
After completion of this lesson student should have the knowledge of fundamentals of one-
dimensional problem.

STRUCTURE:

2.0 Introduction

2.1 Admissible Wave Function

2.2 Stationary States

2.3 One-Dimensional Problems

2.4 Wells and Barriers

2.5 Harmonic Oscillator by Schrodinger Equation

2.6 Summary

2.7 Technical Terms

2.8 Self-Assessment Questions

2.9 Suggested Readings

2.0 INTRODUCTION:

One-dimensional problems in quantum mechanics provide an essential foundation for
understanding the behavior of quantum systems. Although real-world systems typically exist
in three-dimensional space, the one-dimensional approximation is often the first step in
simplifying complex problems. These problems not only give insights into quantum
mechanics but also help develop the mathematical and conceptual tools used for more

complicated systems.

2.1 ADMISSIBLE WAVE FUNCTION:

In quantum mechanics, admissible wave functions (also known as physical wave

functions) are wave functions that satisfy the conditions necessary for describing the state of
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a quantum system. These conditions ensure that the wave function is physically meaningful

and mathematically consistent. The key properties of admissible wave functions include:

1))

2)

3)

4)

)

Normalization:

The wave function y(x,t) must be normalizable. This means that the total

probability of finding a particle somewhere in space must be 1.

Mathematically, this is expressed as:

f Y(x, t)?dx =1

For a single spatial dimension. For more than one spatial dimension, the integral is

over the entire space.

Continuity and Smoothness:

The wave function y(x,t) should be continuous and smooth (differentiable) where
possible, especially in regions where the potential is finite. Discontinuities or
sharp corners in the wave function could imply infinite physical quantities like

momentum or energy, which are non-physical.

At points where the potential has discontinuities (like in the case of delta-function
potentials), the wave function may be discontinuous, but its derivative should

remain continuous.

Square-Integrability:

The wave function must be square-integrable, y(x, t)?meaning should fall off
sufficiently fast at infinity so that the integral over all space converges to a finite

value. This condition ensures the normalizability condition is satisfied.

Boundary Conditions:

The wave function should go to zero at infinity for systems confined to a finite
region of space. For instance, in problems like the infinite potential well, y(x)=0

at the walls of the well.

For systems where particles are free to move in infinite space, the wave function

typically tends to zero as x — +oo.

Hermiticity of Operators:

In quantum mechanics, physical observables are represented by Hermitian

operators. The wave function y(x,t) must be such that the expectation value of
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6)

7)

8)

9

any physical observable (like position, momentum, energy, etc.) is well-defined.
This ensures that the probability distributions derived from the wave function are

physical and consistent.
Time Dependence:

e In time-dependent problems, the wave function may be written as a solution to the

time-dependent Schrodinger equation:

op(x,t)
ih———— = Hy(x, t
ih—r [{¢q9
WhereH is the Hamiltonian operator. The wave function should evolve according to

this equation and maintain the probabilistic interpretation.
Physical Interpretation

e The modulus squared of the wave function y(x,t)?%, is interpreted as the
probability density for finding a particle at position x (or in a region of space) at

time t.

e The wave function must not yield negative probabilities, so it must be a complex-

valued function with a well-defined probability interpretation.
Eigen functions of Operators

e In some cases, wave functions are also eigenfunctions of certain operators. For
example, in systems like the quantum harmonic oscillator or the hydrogen atom,
the wave function may be an eigenfunction of the Hamiltonian (energy operator)

or the momentum operator.
Symmetry Properties

o The wave function may possess certain symmetries depending on the system, such
as rotational symmetry in the case of central potentials. These symmetries help
determine the form of the wave function and can simplify solving the Schrodinger

equation.

10) Relativistic Considerations

e For systems requiring relativistic quantum mechanics (like the Dirac equation),
the wave function must satisfy the relativistic equation of motion. In these cases,
the wave function may be represented by spinors (for spin-1/2 particles) or other

mathematical objects.



Centre for Distance Education 2.4 Acharya Nagarjuna University

2.2 STATIONARY STATES:

A stationary state refers to a quantum state whose probability distribution does not change
with time. These states are characterized by having a definite energy (associated with an

energy eigenvalue). In mathematical terms, a stationary state y(X,t) can be written as:
—iEt
Y0 =P@e

Here:

e w(x) is the spatial part of the wavefunction (which describes the probability

distribution of the particle's position).
o E is the energy eigenvalue associated with the state.

e 7 1s the reduced Planck's constant.

—iEt/ . .
e e histhe time-dependent phase factor.
The key feature of a stationary state is that while the wavefunction undergoes a phase

evolution over time (due to the factor e_lE / h), the probability density (i.e.,| P(x,t)|?)

remains constant over time.
Time Evolution and the Schrodinger Equation

The time-dependent Schrédinger equation governs the behavior of quantum systems.

For a particle in a potential V(x), it is written as:
d -
ih at/)(x, t) = HY(x,t)

where H is the Hamiltonian operator, which represents the total energy of the system. The

Hamiltonian is typically the sum of the kinetic energy (T') and potential energy (V):
A=T+7V
Now, if the wave function y(x,t) is in a stationary state, it can be written as:
Yo ) = pe

Substituting this into the Schrédinger equation, we get:

ih%t[)(x)e_im/h =H t/J(x)e_iEt/h
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The time derivative of the wave function gives:

ih —% w(x)e_iEt/h =f w(x)e_iEt/h

Simplifying:

El/)(x)e_iEt/ﬁ _ ﬁ l/)(x)e_iEt/h

Cancelling the time-dependent phase factore Y h, we get the time-independent

Schrodinger equation:

Hyp(x) = EP(x)
This equation tells us that the spatial part of the wavefunction y(x) is an eigenfunction of the
Hamiltonian operator
H with eigenvalue E. The solutions y(x)to this equation represent the stationary states, and
the corresponding eigenvalues E represent the energy levels associated with these states.

2.3 ONE DIMENSIONAL PROBLEMS:

One-Dimensional Quantum Mechanics Problem: The Particle in a Box

A classic one-dimensional problem in quantum mechanics is the Particle in a Box (also
known as the Infinite Potential Well). This problem serves as a foundational example to
understand quantum behavior, such as quantized energy levels and wave functions, and is

often used to introduce the basic principles of quantum mechanics.
Problem Setup:

Imagine a particle of mass m confined to a box with infinitely high walls. The particle is free
to move within the box, but it cannot escape because the potential outside the box is infinitely

large.

e The box is a one-dimensional region, say between x=0 and x=L, and outside this

region, the potential is infinite.
o Inside the box (between x=0 and x=L), the potential is zero, i.e., V(x)=0.

Thus, the potential function V(x) is:

B 0 0<x<L
Vi) = {{oo otherwise

This means that the particle is confined to move only within the interval0 < x < L .
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Schrodinger Equation for the Problem:

To solve this problem, we apply the time-independent Schriodinger equation for a particle

in a potential:

h? d*y(x)
2m dx?

+ V(Y (E) = EY(x)

Since V(x)=0 inside the box, the equation simplifies to:

h? d*Y(x)
_ =E
2m  dx? v
Rearranging:
d*Y(x)
= k()
Where k = Z;E. This is a second-order differential equation that describes the

wavefunction y(x) inside the box.

General Solution of the Schrodinger Equation:

The general solution to the above differential equation is:
y(x)=Asin(kx)+Bcos(kx)

where A and B are constants to be determined by boundary conditions and k is related to the

energy of the particle.

Applying Boundary Conditions:

Since the particle is confined to the box, the wavefunction must be zero at the boundaries x=0

and x=L (because the potential is infinite outside the box, the particle cannot exist outside):
1) Atx=0:
v(0)=0
Substituting into the general solution:
0=Asin(0)+Bcos(0) = B=0
Therefore, the wavefunction simplifies to:

y(x)=Asin(kx)
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2) Atx=L:
w(L)=0
Substituting into the wavefunction:
Asin(kL)=0
Since A#0, we must have:
sin(kL)=0

This implies that kL=nm, where n is a positive integer. Thus, the allowed values of k are:

Quantized Energy Levels:

The energy of the particle is related to the wave number k by:

B h2k2
" 2m
Substituting
k, = nL—n gives the quantized energy levels:
n?m?h?
E, = P n=123,.....

Thus, the energy levels are discrete (quantized), and the particle can only occupy certain

energy states, corresponding to the integer values of nnn.

Wave functions (Eigen Functions):

The wavefunctions corresponding to these energy levels are:

(x) = 2  nnx — 123
y,(x) = Lsm A n=123.....

These wave functions describe the probability distribution of the particle's position within the
box. The probability of finding the particle in a given region is proportional to
[yn(x)12[\psin(x)|*2 yn(x)|2.
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Probability Density:

The probability density P(x) is the square of the wave function:

P(x) = [P ()2 = %sirﬂ@

L
This gives the likelihood of finding the particle at position x within the box for a given

energy level E,,.
2.4  WELLS AND BARRIERS:

Quantum Wells:

A quantum well refers to a region in which a particle is confined within a specific spatial
region due to a potential that is lower inside the well than outside it. Essentially, it is a "well"
that traps the particle. Quantum wells are often used to model systems where particles (such
as electrons or atoms) are constrained to move in a particular region, leading to quantized

energy levels.
Types of Quantum Wells:

o Infinite Quantum Well: In this case, the potential inside the well is zero, and the
potential outside the well is infinite. A particle inside this well is completely confined
and cannot escape. The energy levels are quantized, meaning that only certain discrete

energies are allowed.

Potential Profile:

B 0 0<x<L
Vi) = {{oo otherwise

The solutions to the Schrodinger equation inside the well are standing waves, and the

energy eigenvalues are quantized as:

n?m2h?
En=—— n=123 ...

Where n is a positive integer.

o Finite Quantum Well: In a finite quantum well, the potential inside the well is still
lower than outside, but the potential outside the well is not infinite. This means the
particle has a non-zero probability of being found outside the well, though the

probability decreases exponentially beyond the well's boundaries.
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Potential Profile:

Vo, 0<x<L
0, otherwise

V(x) = {

Where V,, is the depth of the well and L is the width of the well.

For a finite well, the energy levels are still quantized, but there are also bound states
and leaky states. The solutions to the Schrodinger equation lead to both discrete
bound state energies (for which the particle is confined) and continuous energies (for

which the particle is free to escape).
Bound States in Quantum Wells:

o Bound states occur when the particle’s energy is less than the potential outside the

well (i.e., E<Oin the case of a negative potential).

o In these states, the wavefunction is localized inside the well, and the particle has

discrete energy levels.
Tunnelling Through a Well (Finite Potential Well):

e In a finite quantum well, the particle may tunnel through the walls if its energy is
higher than the potential at the boundaries of the well but still less than the potential

outside. This is known as quantum tunnelling.

Quantum Barriers:

A quantum barrier is a region where the potential energy of the system is higher than the
energy of the particle. Particles encountering a quantum barrier may reflect or tunnel through

the barrier, depending on their energy.
Types of Quantum Barriers:

o Infinite Barrier: An infinite potential barrier is one where the potential is infinitely

large, making it impossible for the particle to exist in the region beyond the barrier.
Potential Profile:
forx <0orx>1L

0
V(x)={00, for0<x <L

This is similar to the infinite potential well described earlier, but with the barrier
preventing the particle from existing within the region where the potential is infinite.

This scenario is typically used to model particle confinement.



Centre for Distance Education 2.10 Acharya Nagarjuna University

o Finite Barrier: A finite potential barrier, unlike the infinite barrier, has a finite

height, allowing a particle to potentially pass through it via quantum tunneling.
Potential Profile:

0 x<0orx>L
V(x):{—vo, , 0<x<L

Where V,  is the height of the barrier and L is the width of the barrier.

If a particle with energy E (where E<V, ) approaches a finite barrier, it may be
reflected, but there is a non-zero probability that it will tunnel through the barrier

(this phenomenon is known as quantum tunneling).
Tunneling and Transmission Coefficient

The probability of a particle tunneling through a finite barrier depends on:
o The energy of the particle.
o The width and height of the barrier.

The transmission coefficient TTT describes the probability that a particle will tunnel

through a barrier. For a rectangular potential barrier, the transmission coefficient is given by:

T =e 2¥L

where:

, Vo—E.
o« y= Zm(hz‘) is the decay constant.

e L is the width of the barrier.

o Vy is the height of the barrier.
o Eis the energy of the particle.

For high barriers and narrow widths, the transmission probability decreases exponentially,

meaning that tunneling becomes less probable.
Reflection and Transmission:

o If the particle's energy is less than the barrier height E<V , it will experience partial

reflection and partial transmission.
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o The particle’s wavefunction on the other side of the barrier decays exponentially, but
there is still a small non-zero probability of finding the particle beyond the barrier.

This is known as quantum tunneling.

2.5 HARMONIC OSCILLATOR:

A particle undergoing simple harmonic motion in one-dimension is called one-dimensional

harmonic oscillator.
In Simple harmonic motion the restoring force is proportional to displacement.
F = —kx,

Where k is positive constant-force constant.

The one dimensional Schrodinger time independent equation is
9’¥Y  2m
e T

“E-V¥=0 (1)

The potential energy of the Oscillator is V = %kxz. Substitute in eq. (1)

Y N 2m< 1
0x%2  h?

E——kxz)‘l’zo

2
U d n (ZmE _ kmxz) y=o )
axz hz hz - v s e s
For our convenience, let § = ax = x = 2

ﬂdz—
dx_a

dY dY dE

Tdx dE dx

v dw
ax e

v d (d_‘}’)
dg

a2 0 dx

d?y dv
=+ —

dgz  dg
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d?y B de‘P[“ dg ]
(04

axz e Tax

Substitute the above in equation (2)

d?y 2mE  kmx?
o Y=0

& "\ T
%’ n (22{2 _ f:zk;) wv=0 3)
then let A =%and%= 1 = ot =l;l—r;
mk %
= o= (33)
Substitute in equation (3)
azy
d_Ez+O\_EZ)LP:O ...... (4)
then let ¥ = Hn(E)e_g
d?y g _8
r Hp(®)e 2z + Hy(§)e 2 (=¥)
d?y P i _g g _&
adri Hp(§)e 2z + Hp(§)e 2 (=8) + Hp(®e 2 (=§) — Hp(§e 2
" Ho (5) (—De ™2 (—D)
2y 2 2 2
= G = Ha®e ™ — 2B (e (=) + Ha®e > (2 = 1

Substitute the above in equation (4)

H(©)e 7 — 2EH,(D)e™ 7 (=) + Hp(e 7 (& — 1) + (A — E)Hp(®)e s = 0

= HL(E)G_g - ZEHQ(E)G_%—E) +(A- 1)Hn(E)e_§ =0
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One-Dimensional Problems

= Hp(®) — 28H () + A — DHL,()) =0

This equation is identical to Hermites polynomial, then

then2n=A—-—1 =>A=1+2n

h2a?

But we know that A = 22— = 2n4+ 1= o2 = (I;:;()E

2 _ M
=R
then7\=le;1;EZ=2n+1
2mE
= zmm=2n+1
h
2E
7\:%:21’14'1

(2n+ Dhw
E = —

1
:>E=<n+§)h(o

where n = 0,1,2,3, ... (Eigen Values)

This equation indicates that the energy levels of harmonic oscillator are equally spaced.

Significance of Zero-Point Energy:

For ground state, n = 0.
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This equation is called Zero-point energy.

Even if all the vibrations of the atom are possible at 0° Kelvin, still some energy is associated

the oscillator, that energy is called zero-point energy.

Eigen Functions of Harmonic Oscillator:

2

g
The Eigen function ¥ can be set equal to the product of polynomial H,(§) and factor e 2
1e.,

2

W= NH (e ... (5)

_edg
ftp;tpnd-[ = Nman Hpn(OH,(§)e 2 o

NNy &
el EROUNGE T

where [ Hm(E)Hn(E)e_ng = 2"nl\/m

NN
f Piwyde = 2221V

N2
f‘{’;‘{’ndr = ann!\/ﬁ =1 form=n

substitute above equation in equation (5)

1
2

)E Hn(E)e"E?

v=(—
200! /1
Zero Point Energy and Eigen Values:
Let alk) = |p) and (k|a® = (p|
(k|atalk) = (plp) p= Normal of the Ket

Then alk) =0 and (Ola’ =0
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H 1
(0]atalo) = <o|%—§|o> > 0 = H|0) = E,|0)

= (2 -3)(0l0)

hAw

E, 1 0 [E hw]
5 — == = —
hw 2 °7 2

This is called ground state zero point energy.
hw
<k|H T~ |k> >0

1
Ek=<k+§)hm

Hence wave function of the ground state is like this

Then we have al0) =0

Y )
But we know that  a= " [q + uw]

pol  ip]
—|q+—1{0)=0
2h _q U] )
po [  ip]

— —1{0) =0
2h _q-l_ua)_ )

i .. 0 _
Tt wag
h 0¥,
q 0 — ﬂw aq
h 0¥,
q0q = ———1—

pw ¥y
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Apply integration on both sides

2
q
5 = ——1Ilog¥,
2
q-Hw
logW¥, = — T

)
Yy, = e 2rn XConstant

uw
=~ W¥y(q) = constant Hn(q)e(_ﬁ)q2 We can write

1

~ (g = ( )2 Hn(q)e('%)"2

o
2nnl\T
26 SUMMARY:

Student will know about the Quantum Mechanics and Schrodinger Wave equation.
The student will solve the physics problems by using Schrodinger Wave Equation.
2.7 TECHNICAL TERMS:

Admissible wave functions, Stationary states, One-dimensional problems, wells and
barriers, Quantum Mechanics, Harmonic Oscillator.

2.8 SELF-ASSESSMENT QUESTIONS:

1) Explain about the one dimensional problems.
2) Solve the problem of Harmonic Oscillator using Schrodinger Wave equation.

3) Briefly explain about the Admissible wave functions.

2.9 SUGGESTED READINGS:
1) L I Schiff, Quantum Mechanics (Mc Graw-Hill).
2) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).
3) A P Messiah, Quantum Mechanics.
4) Mathews and Venkatesan Quantum Mechanics.

5) Fundamentals of quantum Mechanics, Statistical Mechanics & Solid State Physics
by S.P.Kuila, Books and Allied, Kolkata.

Prof. M. Rami Reddy



LESSON-3
LINEAR VECTOR SPACES IN QUANTUM MECHANICS

3.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept ofLinear vector spaces in
Quantum mechanics. The chapter began with understanding Vectors and operators, Change
of Basis, Dirac Ket-Bra notations, Eigen value problem for operators. After completion of
this lesson student should have the knowledge of fundamentals of Linear vector spaces in
Quantum mechanics.

STRUCTURE:

3.1 Introduction

3.2 Vectors and Operators

3.3 Change of Basis

3.4 Dirac Ket-Branotations

3.5 Eigen Value Problem for Operators
3.6 Summary

3.7 Technical Terms

3.8 Self-Assessment Questions

3.9 Suggested Readings

3.1 INTRODUCTION:

Quantum Mechanics was developed by eminent scientists who had strong foundation in both
physics and mathematics. Modern approach treats quantum mechanics as a new subject with
its own set of postulates. The development of the theory is based on mathematical techniques
using operators. Operator algebra follows the general laws of commutation, association and
distribution with respect to addition. But multiplication is not necessarily commutative, as is
with matrices. It is of interest to understand operators.

3.2 VECTORS AND OPERATORS:

An operator is a rule by which one wave function is changed to another.

AY = ¢
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HereA = operator,¥ = wave function,¢p = New wave function
R0y 2
Ex: A=—¥Y=x
ax

0 2 _
axx = 2X

1) Linear QOperator:

Any operator A linear operator is for any two arbitrary wave function wave function ¥, (x)

P, (x) we get
ALY, (x) + P, (0] = AV, (X) + AP, (x)
ALY, (x)] = AAY,(X)

Where A is a constant which may or may not be a complex number and ¥,(x) ,¥,(x) are
arbitrary wave functions. Here A is said to be an anti linear operator then it satisfies the
following relations.

A, (0] = VA, (x)

2) ldentity Operator:

An operator which leaves energy vector of a given space unchanged is known as identity
operator.

%)
1
at
[l
oS

Where [ is identity operator.

3) Null.or Zero operator:

When an operator is applied on one wave function. Then after operator the function becomes
zero. Then such on operator is called null operator.

0¥ ==90=0
Where 0 is null operator.

4) Unitary Operator:

When the inverse and ad-joint of an operator are identical. Then the operator is known as
unitary operator. If U is unitary operator then
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vit=0t U=1 and uit=0"1tU=
Again for two state function ¥ and ¢
(@1®) = (9|UT U|¥) = (UplUw)

5) Inverse Operator:

Consider two wave function ¥, (x) and ¥, (x). Let the operator 4 real’s than
() = A¥,(x)  and A¥,(x) =¥, (x)(1)
If there exist another operator B which reverse the action of 4, such that
BY(x) = ¥,(x)(2)

From (1)and(2) the operator B=A"" is called inverse operator ofA. The operator A satisfy

the following condition then it is called inverse operator.
ARt =1

6) Adjoint Operator or Hermitian Operator:

Let A is an arbitrary operator can define another linear operatorAt,
J ¥ Atg dr =f (AY) ¢ dr (YATd) = A¥H(1)

When equation ¥; and ¢ are two arbitrary function if A Hermitian we can write

By comparing eg. (1) & (2), we get
At =A

i.e., A is Hermitian operator.
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7) Projection Operator:

Consider a ‘N’ decimal space formed by a set of “N” mutually orthogonal unit vectors, If each
other. “<i>” of an orthogonal we introduce a projection operator ‘P;’.

The effect of ‘P;” on arbitrary vector <¥> space is to produce a new vector whose
direction is along the basis vector “|<i>".

Hilbert space defined by a complete set of
Eigen kets |¥;)'s(i =1,234...)
|LIJ> = Li)il Ci |LI—’1)WheI‘e C; = (llll|l}l)

|P) = X2 (WilP) W) = X2, [UXBIP) IF [W) = [¥)

|W;) = iI‘PiM‘PiI‘Pi) = i P|¥;)

Where P; = |W¥;){W¥;|P; is called projection operator.

Zpi =1
i=1

Properties of Projection Operator:

B’|¥) = B(BIW)) = BIW N W|¥) = W, (W, |¥, (W, |W)
=YW |¥) = Bl¥) ~ (y|¥) =1

=2
Pl_

)

~

(ii). Projection operator P; is Hermitian
For any two arbitrary Kets|m) and |n), we have

(n|B;|m) = (nliXilm) = (mli)*(iln)* = (m|B;|n)" = (P;n|m)
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8) Momentum Operator:

A2 (13 h 1 3
Momentum operator p is represented as ?V in terms of components

9) Product of Two Unitary Operators:

If A and B are two unitary operators.

Then,

"~ (AB)(AB)" =(AB)(4B)=1
Thus A and B are two unitary operators, then their product is also a unitary operator.

10) Parity Operator:

It is defined as #Y¥(x) = W(x). That is when the wave function W(x)is operated by parity

operator it gets reflected n its co-ordinates.
() [P0 + P, (0] = P1(—x) + P2 (—x) =7¥1(X) + A, (X)

(i) #R[P(x)]=(¥(—x)) = (A¥(x)) Hence # is a linear operator.
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(iii) The Eigen value of 7 operator is 7%V = AY
2¥(x) = ARP(x) = RAP(x) = 172V (x) = A(AP(x))= 12¥(x) (1)
2P (x) =AY (x) =A¥Y(—x) = P(x) (2
From (1)&(2)A% =1 then A =+1
The Eigen function corresponding 4 = +1 are called Even functions represents by ¥,
Yo (x) = ¥e(—x)
The Eigen function corresponding A = —1 are called Odd functions represents by ¥,

lIlo (X) = _lPo (—X)

11) Addition and Subtraction Operator:

The Addition and Subtraction of operator gives new operators. The sum and difference of
operator as defined by

(A + L?)f(x): A f(x) £ B f(x)

EX:-A =log,,B = di f(x) = x2

xl
d\.,2 - 2494 .2
+ = +
(Ioge + dx) x* = logex® %= X
=21l0ge X £ 2X

= 2(loge X £ X)

12) Multiplication Operator;

Multiplication of two operators means operation by the two operators of after the order of
operation being from right to left.

ABf(x) Means that the function f(x) is first operated by B operator gives a new function

g(x) and g(x) is operated by the operator A&B finally gives the function h(x)

ABf(x) = A (Bf(x)) = A(g(x)) = h(x)
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EX:-A = 4x?B = = f (x) =ax?
ABf(x) = 4x? aa—x(ax3) =4x?(3ax?) =12 ax*

3.3 CHANGE OF BASIS:

We must now consider the transformation from one representation from one representation to
another in the general space. Along with the old unprimed basis we consider a new primed
basis. The new basis vectors may be expressed in terms of the old ones.

~

P =39Sy (1)
511 511 e 511

s=(Su S S
511 511 e 511

Two such basis changes, S and R, performed in this order, is equivalent to a single one whose
matrix is simply the product matrix RS. To obtain the new components of an arbitrary vector

we write
Y, =2ia; ¥ =Yra’, Py (2)

Substituting Eq. (1) we get a; = Y; a xSix (3)
o[
az ayz
S =87
dn \a.’n/
We must also determine the connection between the matrices A and A'representing the
operator A in the old and new representations.
AP =59 A =X 5 PiSud 'y ()
But on the other hand
AP ; =AY P,S; =2 2k PrdiSu (5)

Comparing Eq. (4) and (5) we get SA' = AS

A =5"1AS
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We say that A" is obtained from A by a similarity transformation.
34 DIRAC’S BRA AND KET NOTATIONS:
Consider the product (A¥,¥,)= A*(¥,¥})

The scalar product is said to be dependent on the prefatory in antilinear fashion. This
type of symmetry can be aviated. If we take two factors belonging to two different vectors
spaces each space is linear in itself related to each other in an anti linear manner.

Thus we have a space of post factor vector and a space of three factor vectors. The
connection between the dual spaces is given by

(Pal¥p) or (alb) = 84p
(Wol¥p) = [ W ¥y dr
Then in this ‘< "is called bra and ‘> "is called ket. The operator « is said to be linear
ifa|A) = alA) or(Blald) = [ ¥'za¥, dr
Properties of Bra and Ket Notation:

1) Operation on a Ket vector from the left with an operator A produces another Ket vector
Alw) = |‘P')and the operation on a bra vector from the right with an operator A produces
another bra vector (Y|4 = (¥'|

2) The Kets may be multiplied by complex numbers and may be added to give other
Ketsi.ea,|Q) + a,|R) = |S)

The sum of two Bras is defined by the condition that its scalar product with any Ket vector

|Q) is the sum of the scalar product of (R| and (S| with |Q). In notation

{(RI + (SI}H@Q) = (RIQ) + (SIQ)
3) The expectation value of an operator A in the state ¥ can be written in this notation as
(Ay = [V A¥ dr = [ P"¥ dr = (P|¥)= (P|A|P)

4) The Eigen value problem for quantum mechanical state in these notations. If an operator
Aoperates on a Ket|¥) from left.
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AlP)= A|P)

5) The set of Eigenkets{|¥,),|¥;),....... |¥p),...... [¥,,,)} will be an orthonormal set of

eigenkets if (¥, |¥,,) = pnM=1,23,.........
A bra and a Ket vector will be called orthogonal if their scalar product is zero.

6) If we have a complete set of eigenkets|¥;)’s, (i = 1,2,3,... ), then in analogy with the

complete set of eigen-functions, we can express any arbitrary Ket |¥) as

W)= Y72, c; |¥;)  Where ¢; = (¥;|'¥)
35 THE EIGEN VALUE PROBLEM FOR OPERATORS:

A ket|A’) is called an Eigen vector, or Eigen ket, of the operator A if
A|A) = A|A)
An Eigen value enclosed in a ket|A), as in |A'), denotes the Eigen ket belonging to that Eigen

value. Assume that 'K — 1’ of the Eigen vectors are linearly independent but that the K"

Eigen vector depends linearly on these.
If AY; =AY, = 2549
AY; = ALY = A SNY = ILALY,
Hence A, = A}
Let A be a Hermitian operator
A|A) = A|A)--~(1) and A|A") = A'|A)-- (2)
Multiplication Eq(1) on left with a bra,

(A'|A[A) = A(A|A)--- (3)
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From the Eq(2), by the Hermitian property A,

(A'|lA=A"(A']
Hence
(Klalw) =" (8 |R) @
Combing Eq(3) and (4)
K-AYWR)=0  — @

If we letA” = A, and recall that (A'|A) > 0, It follows that
A = A" = Real
All Eigen values of a Hermitian operator are real. Eq(5) can be written as
(A —A)A'|A) =0
Eigen values are orthogonal (A"|A) =0  we shall usually assume that
(AulA,> =Opn"

3.6 SUMMARY:

In this chapter change of basis and different operators were discussed. Addition,
subtraction and multiplication of operators is also discussed. Dirac notation is also explained.

Eigen value problem for operators is also discussed.

3.7  TECHNICAL TERMS:

Vectors and Operators, Change of Basis, Dirac’s Bra and Ketnotations, Eigen Value.

3.7  SELF-ASSESSMENT QUESTIONS:

1) How do you change the basis?
2) Explain about the Vectors and Operators?
3) Briefly explain about the Dirac’s bra and Ket notations?

4) What is the Eigen value problem for operators?
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3.9

SUGGESTED READINGS:

1) JJ Sakural, Modem Quantum Mechanics.
2) Mathews and Venkatesan Quantum Mechanics.
3) Quantum Mechanics” by R.D. Ratna Raju.

4) Fundamentals of Quantum Mechanics, Statistical Mechanics & Solid State
Physics by S.P. Kuila, Books and Allied, Kolkata.

Prof. M. Rami Reddy



LESSON-4
LINEAR VECTOR SPACES AND OPERATORS

4.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Linear vector spaces in
Quantum mechanics. The chapter began with understanding ofThe continuous spectrum,
Application to Wave Mechanics in One Dimension, Hermitian operator, Unitary operator,
Projection operatorAfter completion of this lesson student should have the knowledge of
fundamentals of Linear vector spaces in Quantum mechanics.To develop understanding of
postulates of quantum mechanics and to learn to apply them to solve some quantum
mechanical systems To offer systematic methodology for the application of approximation
methods to solve complicated quantum mechanical systems

STRUCTURE:

4.1 Introduction

4.2 The Continuous Spectrum

4.3 Application to Wave Mechanics in One Dimension
4.4 Hermitian Operator

4.5 Unitary Operator

4.6 Projection Operator

4.7 Summary

4.8 Technical Terms

4.9 Self-Assessment Questions

4.10 Suggested Readings
4.1 INTRODUCTION:

Quantum Mechanics was developed by eminent scientists who had strong foundation in both
physics and mathematics. Modern approach treats quantum mechanics as a new subject with
its own set of postulates. The development of the theory is based on mathematical techniques
using operators. Operator algebra follows the general laws of commutation, association and
distribution with respect to addition. But multiplication is not necessarily commutative, as is
with matrices.
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42  THE CONTINUOUS SPECTRUM:

The spectrum of Eigen values consists of discrete points and continuous portion. The
Eigen vectors corresponding to discrete Eigen values can be normalized to unity. In the
continuous portion of the spectrum, we assume that the Eigen vector is a continuous function
of the Eigen value.

A|A) = A|A) Where A’ is real.
(A|A") = 8(A' = A") In analogy with
(N|A") =6, 5 For the discrete Eigen values.

These normalizations all the formulas for the discrete and continuous cases are very
similar, except that integrals in the latter replace sums in the former. An arbitrary vector can
be written as

j2) = > [k )k'|a) + J Ky ak” ()

T

k

The discrete and the integral over the continuous Eigen values of the complete set of
commuting observables symbolized by k.

The Eigen value problem of an operator A, assuming a purely continuous set of basis
vectors. The equation

A|A) = A'|A)Becomes JAlkYadk' (k'|A)y=A[ |k)Ydk'(k'|4)  or
J(k'Alk )k (k| 4) = A(k"|4)
4.3  APPLICATION TO WAVE MECHANICS INONE DIMENSION:

The wave mechanics of a point particle, for simplicity restricted to one dimension. The state
of the system is determined by a ket|a). Since we can always measure the particle’s position
along the x-axis, there must be a Hermitian operator x corresponding to this observable.
Hence, the Eigen values of x, denoted byx', form a continuum. The corresponding Eigen
vectors are denoted by |x)

x|xy = x|x)
With the assumed normalization

(x"|x) = 6(x"—x")
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The vector |a) can be expanded as
la) = [ |x) dx'(x|a)
If we write
¥a(x) = (x]a)

The connection between state vectors |a) and the wave function ¥, (x") is established
x'is the continuously variable label of the components ¥, (x") of state vector ¥, = |a) in an
infinitely dimensional abstract space. The Eigen vectors of the position operator X, is called
coordinate representation, and we might say that wave mechanics is quantum mechanics

conducted in the coordinate representation. The scalar product of two states becomes

(bla) = [ (b|x")dx"(x"|x")dx'(x'|a)

(blay = [ (b|x")dx"8(x" — x)dx (x| a)

+o0

(bla) = j ¥y (x)¥,(x) dx’

—o0

The Orthogonality of two states is expressed by the equation

+o0

(blay = j W, ()W, (x) dx' = 0
4.4 HERMITIAN OPERATORS:

Hermitian operators are very important in the development of Quantum Mechanics.

Therefore, it is necessary to understand the essential features of this class of operators.

If, for any two arbitrary eigenfunctions ¢m (X) and @n(X),
[ on Agudx = [ (ATpn) padx (1)

then AT is called the adjoint of the operator A. If A= AT, then the operator A is called
the self-adjoint or Hermitian operator. Thus a Hermitian Operator is defined according to the
following equation:
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[ on Aeudx = [ (Aom) gndx ¥
Properties:

1) The eigen functions of a Hermitian operator are real.

i) Any two eigen functions which belong to two different eigen values of a Hermitian
operator are orthogonal.

Proof:

In the case of operator A, consider two eigen functions ¢mnand ¢, with eigen values a, and
an respectively.

A om= amom (3)

A on= an ¢n (4)

Multiplying equation-4 with ¢, and equation-13 by ¢, from left and integrating,

[ on Aondx = an[ om gndx 5)

[ o0 Agnx = an[ @ omdx (6)

Taking the complex conjugation of equation-6, we have
| (Aom)ondx = am' [ on'gn dx U

Using the Hermitian property of operator A(equation-lZ), LHS of equations-5 and 7 are

equal; hence the RHS must also be equal. Therefore,
an I Om OndX = am I Om On X (8)
If we consider the case n = m, the above equation becomes

am I Om OmdX = am f Om Pm dX 9)
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From the above equations, it is obvious that an, = an and hence an, = real. This proves the

first property that the eigen functions of a Hermitian Operator are real.

Using am =am and rewriting equation-18, we have
(@ —am) [ ¢meadx = 0 (10)
For two different eigenvalues, i.e., for (a, —am) # 0, we have
I Om@ndx = 0

This is the condition for orthogonality of ¢m and ¢, and this proves the second property.
Note:

(i) In the case of matrix operators, a matrix (M) is said to be Hermitian, if it is equal to its
transpose conjugate (M": (M) = M.

(i) M is said to be unitary, if M =M *, where M 7 is the inverse of M

(i) M is said to be orthogonal, if M" =M ™ where M" is the transpose of M.
45 UNITARY OPERATOR:

When the inverse and ad-joint of an operator are identical. Then the operator is known as

unitary operator. If U is unitary operator then

vit=0t U=1 and Uit =0"tu=l
Again for two state function ¥ and ¢

(01%) = (4] 0T U [¥) = (UolUw)

4.6 PROJECTION OPERATOR:

Consider a ‘N’ decimal space formed by a set of “N’ mutually orthogonal unit vectors, If each

other. “<i>” of an orthogonal we introduce a projection operator ‘P;’.
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The effect of ‘P, on arbitrary vector <¥> space is to produce a new vector whose direction is

along the basis vector “|<i>".
Hilbert space defined by a complete set of Eigen kets|¥;)'s(i = 1,2,3/4...)
|lP> = chfozl Ci |T1>Where C; = (TlllII)

|¥) = X2 (B W) = X [ Xilw) If [9) = |9))

|¥;) = il‘l’o(‘l’il‘l’i) = i P;|¥;)

Where P; = |¥;)(¥;|P;1s called projection operator.

Zpi =1
i=1

Properties of Projection Operator:

().B" =P
BY|w) = B(BIW)) = BI¥, W) = |, (W |W,}¥;|¥)

=[P N P) = BIW) - (¥1¥;) =1

)

N
[l

)

~
~

(ii). Projection operator P; is Hermitian
For any two arbitrary Kets|m) and |n), we have

(n|B;|m) = (nliXilm) = (mli)*(iln)* = (m|B;|n)" = (P;n|m)

4.7 SUMMARY:

In this chapter continuous spectrum, application in wave mechanics and some of the

operators are discussed.

48 TECHNICAL TERMS:

Continuous spectrum, Wave mechanics, Hermitian, Unitary, Projection operators.
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49  SELF-ASSESSMENT QUESTIONS

1) Describe about the continuous spectrum.
2) Write the application in Wave mechanics.

3) Briefly explain about the projection operators.
4.10 SUGGESTED READINGS:

1) Eugen Merzbacher, Quantum Mechanics, Wiley.

2) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).
3) JJSakural, Modem Quantum Mechanics.

4) Mathews and Venkatesan Quantum Mechanics.

5) Quantum Mechanics” by R.D. Ratna Raju.

Prof. M. Rami Reddy



LESSON-5
LINEAR VECTOR SPACES AND OPERATORS

5.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Linear vector spaces in
Quantum mechanics. The chapter began with understanding Positive operators, Change of
orthonormal basis, Uncertainity Relation. After completion of this lesson student should have
the knowledge of fundamentals of Linear vector spaces in Quantum mechanics. To develop
understanding of postulates of quantum mechanics and to learn to apply them to solve some
quantum mechanical systems. To offer systematic methodology for the application of
approximation methods to solve complicated quantum mechanical systems
STRUCTURE:

5.1 Introduction

5.2 Positive Operators

5.3 Change of Orthonormal Basis
5.4 Orthogonalization Procedure
5.5 Uncertainity Relation.

5.6 Summary

5.7 Technical Terms

5.8 Self-Assessment Questions

5.9 Suggested Readings

5.1 INTRODUCTION:

Quantum Mechanics was developed by eminent scientists who had strong foundation in both
physics and mathematics. Modern approach treats quantum mechanics as a new subject with
its own set of postulates. The development of the theory is based on mathematical techniques
using operators. Operator algebra follows the general laws of commutation, association and
distribution with respect to addition. But multiplication is not necessarily commutative, as is
with matrices. It is of interest to understand operators

5.2 POSITIVE OPERATORS:

A positive operator is a special type of self-adjoint operator that has the following property:
for any vector |y) in the Hilbert space, the expectation value of the operator is non-negative:
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(WlAy)>0

Mathematically, we say that A is positive if:

~

A>0
This condition means that the operator A has no negative eigen values, i.e., its spectrum (the
set of its eigen values) is non-negative.

In other words, for a self-adjoint operator A, the operator is positive if all of its eigen values A
satisfy:

>0

Mathematical Definition of Positive Operators:

An operator A is positive if it satisfies the following condition for all states |y) in the Hilbert
space:

(WlAy)>0

If A is positive, it can be shown that:
e The operator is self-adjoint.
e The operator’s eigen values are non-negative (i.e., A>0).

One way to express this mathematically is that for a self-adjoint operator 4, it is positive if all
of its eigen values are non-negative. In terms of the spectral decomposition of the operator:

A=)y, Wy, [d A

Where X represents the eigen values, the operator A is positive if >0 for all eigen values.

5.3 CHANGE OF ORTHONORMAL BASIS:

Suppose we have two different orthonormal bases in the Hilbert space:
o One basis {ly, )} for the original representation.
 Another basis {I¢,)} for the new representation.

To perform a change of orthonormal basis, we express the new basis vectors {|¢,)} in terms
of the original basis vectors {ly, )}. This is done by finding a unitary transformation matrix
UUU that relates the two bases.
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Unitary Transformation

The key idea is that a change of basis can be represented by a unitary transformation. A
unitary operator U satisfies:

Utu=uut=l

Where Ut is the Hermitian conjugate (or adjoint) of U, and | is the identity operator.
Let {I;)} be the new basis vectors, and we want to express these in terms of the original

basis {ly, )} The relationship is:

| ¢l> = Uijl\Vj )

Where U;; are the components of the unitary transformation matrix U.

The inverse relationship, where we express the original basis vectors {|y, )} in terms of the

new basis {I¢,)}, is given by:

|\Ifi >: U Tijl ¢]>
or equivalently, Ut is the matrix corresponding to the inverse of the unitary transformation.

54 ORTHOGONALIZATION PROCEDURE

In quantum mechanics, orthogonalization is an essential process for obtaining an
orthonormal set of basis vectors from a set of linearly independent vectors. This procedure is
crucial because many quantum mechanical calculations, such as those involving wave
functions, operators, and measurements, are easier to perform in an orthonormal basis. The
most common method for orthogonalizing a set of wvectors is Gram-Schmidt
orthogonalization.

Here’s a detailed breakdown of the orthogonalization procedure in the context of quantum
mechanics:

Orthonormal Basis:

Before diving into the procedure, let’s clarify the concepts of orthogonal and orthonormal
sets:

 Orthogonal Vectors: A set of vectors |y, ) is orthogonal if the inner product of any

two distinct vectors is zero:

(v, |\Vj =0  fori#j
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» Orthonormal Vectors: A set of vectors |y, ) is orthonormal if it is orthogonal and

every vector has unit length:
(w; ly; )=1
In quantum mechanics, states are typically represented as vectors in a Hilbert space, and the
orthonormal basis plays an important role in expanding and manipulating quantum states.

Properties of the Orthonormalization Procedure:

e Preservation of Linear Independence: The Gram-Schmidt procedure takes a
linearly independent set and transforms it into an orthonormal set. The vectors remain
linearly independent because the process only involves subtraction of projections,
which does not introduce any linear dependence.

« Normalization: Each vector is normalized after the orthogonalization step, ensuring
that the final set is orthonormal, meaning that the vectors are both orthogonal and
have unit length.

e Inner Product Preservation: The inner product between two vectors

ly, ) and ly; yin the resulting orthonormal set will be:

|<\Vl N[] >:5ij

Where §;; is the Kronecker delta.

5.5 UNCERTAINTY RELATION:

Suppose that AandB are Hermitian operators At = A&B* = Band 1 is a real number. The
mean value of the product of the operators and its adjoint is never negative. i.e.
((4+i2B)(A+irB)y>0
((A+iAB)(A —iAB)) = 0or
F(1) = (A2) + (B?)22 — il(AB — BA) = 0
Since f(A) is real, (AB — BA) is purely imaginary. To determine the minimum value of

f (1), We must take that value of A which makes % equal to zero.



Introductory Quantum Mechanics 55

g =2(B*)1 — i(AB — BA) =0

The minimum value of A is given by

[F Dl = (42) + () {EER7 _

(B2) 2 AB ~ EA)‘{(AB_M i} 20

(B2) 2
[f D] i = (A7) + i% >0 we get
(A2)B%) = —{(AB-BAY (1)

Heisenberg uncertainty relations-Which is valid for two canonically conjugate observables

AandB such that [4, B] = ih. We define uncertainties AAandAB to be the r.m.s.
M= (4~ <A>)2>}%
(24)" = (A — (A)°) = (42) — (4)?
a8 = {((8 - BN
(aB)? = (B - (B))*) = (B?) — (B)?

From Eq.(1(AA%)(AB?) > —2{(AAAB — ABAA)Y

(AA2)(AB?) > —%R[AA,AED}Z

Reduced to

(84)(88) = 5 (([4. B])

We know that [4, B] = i%

Linear Vector Spaces and Operators \
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(AA)(AB) = g

This is the Heisenberg uncertainty relation.

5.6

SUMMARY:

In this chapter about the Positive operators, change of orthonormal basis, orthogonalization

procedure and Uncertainty relation is discussed.

5.7

5.8

5.9

TECHNICAL TERMS:

Positive operators, Change of orthonormal basis, uncertainty relation.

SELF-ASSESSMENT QUESTIONS:

1) What is Positive operator? Explain in brief.
2) How do you change Orthonormal basis?

3) What is the Orthogonalization procedure?

4) What is uncertainty relation? Explain.

SUGGESTED READINGS:

1) Eugen Merzbacher, Quantum Mechanics, Wiley.

2) L I Schiff, Quantum Mechanics (Mc Graw-Hill).

3) B Crasemann and J D Powell, Quantum Mechanics (Addison Wesley).
4) A P Messiah, Quantum Mechanics.

5) JJ Sakural, Modem Quantum Mechanics.

6) Mathews and Venkatesan Quantum Mechanics.

7) Quantum Mechanics” by R.D. Ratna Raju.

Prof. R.V.S.S.N. Ravi Kumar



LESSON-6
ANGULAR MOMENTUM

6.0 AIM ABD OBJECTIVE:

The primary goal of this chapter is to understand the concept of Angular momentum. The
chapter began with understanding of communication relations of angular momentum
operator, angular momentum in spherical polar coordinates. After completing this chapter,

the student will understand the complete idea about angular momentum.

STRUCTURE:

6.1 Introduction of Angular Momentum

6.2 Communication Relations for Angular Momentum Operator
6.3  Angular Momentum in Spherical Polar Coordinates

6.4  Summary

6.5 Technical Terms

6.6 Self Assessment Questions

6.7 Suggested Readings

6.1 INTRODUCTION OF ANGULAR MOMENTUM:

Angular momentum (which is described as an operator) plays a much importance role
in quantum mechanics than in classical mechanics (where it is described as a dynamical
variable). This is probably due to greater importance of periodic motions in quantum
mechanics. A periodic motion can be understood as a motion in a closed orbit, which
involves angular momentum. The existence of the intrinsic angular momentum (spin angular
momentum) could also be another reason and another most importance reason is that the
angular momentum is quantized which is not the case with the linear momentum.

Whenever a conservation law holds good for a physical quantum system, the
Hamiltonian of the system is invariant under the corresponding group of transformations. The
converse of this statement is not true as even if the system has a Hamiltonian, which is
invariant under a group of transformations, there may not be a corresponding conservation
law. Wigner showed that all symmetry transformations of quantum mechanical states can be
chosen so as to correspond to either unitary orantiunitary operators. It is unitary
transformations; it has other consequences which may be tested by the experiments.

The present chapter is devoted to symmetries with respect to rotations, which is
reflected in the angular momentum vector operator (not an ordinary vector as in classical
mechanics) has been defined by the commutation rules for its components, the orbital angular
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momentum and spin angular momentum of particle have been constructed , their eigen values
and eigen functions have been obtained and the connection between rotations and angular
momentum has been established.

This entire unit is divided in to five parts:

1) Deals with the preliminaries of the angular momentum, commutator algebra etc.
i1) The eigen value problem of orbital angular momentum is described in detail;

i11) In this the spin angular momentum, the pauli spin matrices and their properties have

been discussed;

iv) In this lesson the emphasize is given to the eigen value problem of total angular

momentum J.

v) The last part of the unit consist of the addition of angular momenta associated with

different physical systems and related numerical problems

6.2 COMMUNICATION RELATIONS FOR ANGULAR MOMENTUM
OPERATOR:

1) Commutation Algebra of Angular Momentum Operator:
(i) With position co-ordinates:

[Ly, x] = [ —zP, X]

= [yP, x] — [ZPy, x|
= y[P,.x] + [y, xIP, — 2[P,,x] - [z xIP

=0

[Lx, y] = [yP, — zP;,y]
= [yP, y] - [2R,,y]
= y[P,yl + [y, yIP, — 2[R, y] — [z, y]P,
= ihz

[Ly, z] = [yPZ —zP,, Z]
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= [yP, z] — [2P,, 7]
= y[P,z] + [y,z]P, — 2[Py, 2] — [2,2]Py
= —ihy
[Ly,X] = 0; [Ly,y] = ihz; [Ly,z] = —iky
Similarly,
[Ly, x] = —ihz; [Ly,y] = 0;[Ly,z] = ihx
(Lo, x] = ihy; [Ly, y] = —ihx; [Ly, 2] = 0;
ii) With position co-ordinates:
[Ly Pl = [yP, — 2Py, By]
= [yP, B — [P, B]
= y[P,, B + [y, PP, — 2[P, B ] — [z BB,
=0
L. By| = [yP, — zP,, By
= [yP,, By| — [2Py, By
=y[P. By] + [y, By [P, — 2[P, B)] - [z, By [Py
= ihP,
[Ly, P,] = [yP, — 2P, P,
= [yP,, P,] — [2P,, B,]
= y[P,, P,] + [y, P,IP, — [P, B,] - [2,P,]Py

= —ihP,
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[Ly, Pyl = 0; [Ly, Py] = ihP,; [Ly, P,] = —ihP,

Similarly,

[Ly, P] = —ihP,; [Ly, Py] = 0;[Ly, P,] = ihPy
[L,, P] = ihPy; [L,, Py| = —ihPy; [L,, Pl = 0
2) Commutation Relations with Angular Momentum Co-ordinates:

[Ly, Ly] = 0;

[Lx' Ly] = [YPZ —zPy, Ly]

= [sz' Ly] - [ZPy' Ly]
= Y[Pz' Ly] + [y, Ly]Pz - Z[Py' Ly] - [Z' Ly]Py

=y(=ih)P, + 0 — z(0)— iAxP,

= (xP, — yPy)ih

[Ly Ly] = iiL,
Similarly
[Ly, L] = iiLy
[L,, L] = iAL
i j k
3) LxL=|Ly Ly L,
L, L, L,

=1(LyL, — L,Ly) +J(L, Ly — LyL,) + K(LyLy — LyLy)
=1[Ly, L,] +7[Ly, Ly] + K[Ly, Ly ]

= ALy + ihLyJ + ihL,K
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= ih(iLy + Ly + KL,)

Finally,
4) [12,L,] = [L2 + 12 + L2, L,]
= [L3 L] + [L3, L] + [L2,L,]
= [LyLy, L,] + [LyLy, L,]
= Ly[Ly, L,] + [Ly L,]Ly + Ly[Ly, L,] + [Ly, L,]Ly
= Ly(—iALy) + (—iALy )Ly + Ly (iALy) + (ihLy)Ly

= —ihiLyLy — ihLyLy + ihLyLy + ihLcLy

[L?,L,]=0
Similarly

[L3, L] =0

%, L] =0

6.3 ANGULAR MOMENTUM IN SPHERICAL POLAR COORDINATES:

Orbital angular momentumof aparticle is defined in Classical Mechanics as
L=txp

where I = xT + y] + zK is the position co-ordinate or position vector of the particle from the

origin.
The vector p = pyI + pyJ + p,K is the momentum operator of the particle and

L=Li+ Lyy + L,K is the orbital angular momentum vector.
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» L = ¥ X B the direction of L is perpendicular to both ¢ and .

gk
L=|x y z
Px Py Pz

ﬁ = LXT + Lyj) + LzK = (ypz - Zpy)T + (pr - sz)j)-l_ (Xpy - ypx)K
Therefore

9]

(0 [ 0 0
Ly = (ypz - Zpy) = —ih (YE_ Za_y> Ly = (pr - sz) = —ih (Z&— X£>

L= - ik d d
zZ — (Xpy _ypx) = -1 <X6_y_y&>

The components of orbital angular momentum in spherical polar co-ordinates (r, 8, ¢)

d d
Ly = —ih (—sin(p% — cos¢ cotf %>

. Ja d
L, = —ih (—cosq)% — sing cotf %)

L, = 'fla
zZ la(p

and L* = L5 + LS + L3

_ 1 a<,ea>+ 1 02
B sinf 90 St 90/  sin26 g¢*

6.4 SUMMARY OF THE LESSON:

The angular momentum definition and its three components are given in detail. The
three components of angular momentum are also described in spherical polar coordinates.
The commutation relations of angular momentum with the position operators, with the
components of the linear momentum are worked out. The values of the commutator between
angular momentumcomponents in pairs have also been obtained and it is also shown that the

commutator [Lz, L;]=0 for any value of i.
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6.5

6.6

6.7

TECHNICAL TERMS:

Angular Momentum, Communication Relations for Angular Momentum Operator,

Angular Momentum in Spherical Polar Coordinates.
SELF ASSESSMENTS:

1) Explain the communication relations for angular momentum

2) Explain the Angular momentum in spherical polar coordinates

SUGGESTED READINGS:

1) A Textbook of Quantum Mechanics-Mathews P M and Venkatesan K (Tata Mc
Graw Hill Publication Co. Ltd., N. Delhi).

2) Quantum Mechanics-Merzbacher E (John Wiley & Sons, New York).

3) Introduction to Quantum Mechanics-Mathews P T (Mc Graw Hill Book Co., New
York).

4) Quantum Mechanics by V. K. Thankappan (Wiley Eastern. Ltd, New Delhi, 1986.

Prof. R.V.S.S.N. Ravi Kumar



LESSON-7
EIGEN VALUE PROBLEM AND EIGEN VALUE FUNCTION

7.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Eigen value problem and
Eigen value functions. The chapter began with understanding of Eigen value problem for
L,andL?operators Eigen value and eigen function of rigid rotator and Hydrogen atom. After
completing this chapter, the student will understand the Eigen value problem and Eigen value
functions.

STRUCTURE:

7.1 Introduction

7.2 Eigen Value Problem for L,, L>L, and L_Operators

7.3 Eigen Value and Eigen Function of Rigid Rotator and Hydrogen Atom
7.5 Summary

7.6 Technical Terms

7.7 Self Assessment Questions

7.8 Suggested Readings

71 INTRODUCTION:

In linear algebra, Eigen values and Eigen vectors are fundamental concepts that arise from
the study of linear transformations. These concepts are important in various fields, including
physics, computer science, engineering, and economics, as they help understand the behavior

of linear systems and matrices.

7.2 EIGEN VALUE PROBLEM FOR L, , L?’L, and L_OPERATORS:

Problem of L,

Consider

Lz= xpy-ypx
0 0

——ih| X —-y = (1)
oy ox

0 0 or 0 00 0 0¢
o_oo,000,0% )
oy oOr oy 00 oy O0¢ Oy



Centre for Distance Education 7.2 Acharya Nagarjuna University

Similarly

0 0 or 0 00 0 0¢
_—t YVt (3)
Ox Or Ox 060 Ox 0O¢ Ox

In spherical polar coordinates

X =1 sinf cos ¢;
y =1 sinfsin¢;
Z =1 co0sf
Tan ® = y/x;

Tan0= /x* +y’ /z

o _Y.
o r’
00 ) 2y
—.sec” @ =———
oy 2z4x* +y°
Tan ® = y/x
P @
»  zsec? HW ___________
op 1
oy  xsec’ ¢
Similarly
%_ X . %_ —-)y . @_f . (5)
X zsec? H.W Toox x'sec’g T oax o
Substituting (4) in (2), we get
i_i ﬂ.ﬁ. i ___________ (6)
dy Or r  zgec? 01/)&' +y7. 69 XsecC ¢ o¢

and
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oo, 22l o__» 9 7)
Yo 7 or zsec20yxaiy2 00 x2sec2d 0p

Eigen value problem and Eigen value function

then eqn (1) becomes

2
—in| L2 |2
sec’ ¢ x’sec’ ¢ ) 0¢

2
—inf1 | L2
x* ) sec’ ¢ O

2

— i [ see? ¢ :1+y_2
o¢ X

L= -ihi

o
Eigen value and Eigen function of L,

Let the operator L, acts on the ¢, gives the eigen value m.

L,®=m®d

@ is the eigen function of L,

In one complete rotation ¢changes to (¢#+26) or n complete revolutions. It will be

(@ + 27m ). During this process, the wave function remains unchanged.
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ie, ®(p+2m)=d, exp(%m (¢ +2/m)

From this 7 is an integer, if n=1, 7 = ; in one revolution; So on can take only inter

times % values.

Problem of L*
L? =L +L%+L7,
Consider Ly=yprzpy
a2
oz Oy
oz oy 0z 0Oy
0’ 2 0’ 0 0
LZX __hz 2 + 2 _2 z — -
{yaz o’ oyer Coy ez
Similarly
, 0° , 0° 0’ 0 0
2. =_p2|z X ——2zx - X—=—-z—
Y ox 0z 0z0x  Ox Oz
0’ 0’ 0’ 0 0
12, = -n¥|y’ +x7 - 2x -y —=—Xx—
{y 2 oy’ 4 Ox0y 4 oy ox
Then
L’ = L+L+1L

{ 2 )¥ @ +z );; e+ );)7 —2x; -2 ; —2227 —2%% —2yz@i; —QZx;;J
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but the value of Laplacian operator V?in terms of spherical polar coordinates is given by

, 1 o ,0 1 o(. .0 1 0’
Vis—s o b | sinf e
r- or or) r-sin” @ 00 00) r-sin” 0 o0¢

yoy 20 2r 0 1 o ( . 0 1 0°
or 'V :—2—+—2.—+ﬁ— sinf — +ﬁ 5
r-or r- or r-sin” 6 00 r-sin” 6 0¢

2
Hence, L? =-n’ ,1 i[siné’ij+ L 9
sin@ 06 06 ) sin’ 0 0¢*

LetY/ (9, ¢)is the eigen function for the operator L2 then L? Y=c Y is the eigen value

equation. Then

2
n’ ,1 i[siné’a—yjnL ,12 812/ +c Y=0
sinf 06 00 ) sin~ 0 0¢

Let Y'u(0,4) =n(0)(s)

is the solution of the above equation. By applying variable and separable method, the
above equation can be divided in two separate equations

Multiplying with sin’fon both sides, the above equation becomes ,

oY?

2

siné’i(siné’a—Y)+csin2 oY + =0
00 00

Separating the two variables

2
sinﬁi(sinea—y)wtcsin2 0Y:—6Y2 =m’(say)
06 00 o¢p

oY?
op’

+m?0=0
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2
1 fl@megzyup—.m
sin@ 060 00 sin’ @

)Y =0
then solution of the I of above two equations is

£(0)= J;_ﬁexpw)

The second is associated Legendre polynomial if C=/ (/+1)

And hence its solution is

20+1)(1 -
77(0):\/( 0 ‘m ||P’”z(cos0)

2(1+m)|

Therefore eigen value equation for L? is

LY. (0,4)= 4(+1)R Y. (6,4) (0, 9)

The eigen value of the operator L? is ¢ (/+1) and the eigen function for L*is

Q1+ 1)1 ~|m |)
Y, (9,¢)=\/ 4ﬂ(1+n‘1n)1 | P (cos 0)exp(im )

thus from the above equation the eigen value equations for the two operators are represented

by

h oY

L. y"=— =mhy,"
z.yl l a¢ yl
h oy
LZ m _ 7" ! =ll+lh2 m
Yi Y (I+Dh”y,

The first few spherical harmonics are listed below:
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_ +i
v =$1/iei’¢ sin @ =$‘/i 4
8 7 r
9,2 _ 2 _ 2
Y, =_1/i(3c0329—1):$‘/ > 227X 7y
167 167 r’
. +i
Y, :%/l—sei"” cos@siné?:i‘/l—s—(x_zly)z
8 81 r
/ 4 / +iv)?
Y2i2 :i 15 eiZl¢ Sinz ezi 15 (x—zly)
327 327 r

Under a coordinate reflection, or inversion, through the origin, which is realized by the

m and

is multiplied by(-1)",

imé

transformation @@+nen -0, the azimuthal wave function e

" (cos 0) by (-1)"™ hence, Y (0, ¢) is multiplied by(-1) ', when r is changed to .

The spherical harmonics are thus eigen functions of the parity operator Up which changes r in
to —.

Upy (r)=w(r1)
UpY,"(6,4)=(-1)"Y," (6, 9)

i.e., Y,"has definite parity in consonance with the parity of angular momentum quantum

number /.

The spherical harmonics form an orthonormal set since
27 i .
[ Y0 ©.6)*Y] (0.4)sin0d6 dgp=5,5,
0

We may now define two new operators:
L.=LHlL,,
L- =L, iL,
Which can be written in terms of spherical polar coordinates as

L.= he” (i + icot@iJ
00 00
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L.=-he" (i —icot Gij
00 00

The eigen value equations for these two operators are

L-Y"(0.4) = h)(£=m)(L +m+1)Y,"" (0, 4)

L-Y,"(0,9) = h)(L =m)(L—m+1)Y,"" (0,9)

The operators L; and L- are in fact raising and lowering operators for the magnetic quantum

number.

L+ AND L. OPERATORS:

(L. and L. operators Eigen problem with Orbital Angular Momentum):

L, = Ly +iLyand L_ = L, — iL,

Finding Commutation relation between L, and L,

[Lz Ly] = [Lg Ly + iLy]
= [Ly, Lg] + i[L, Ly]
= ihLy + i(—iALy)
= ih[Ly — iLy]
= AliLy + Ly]
= h[Ly + iLy]
= L,

Similarly

[Lo, L] = [L, Ly — iLy]

= [L,, Lg] — i[L, Ly]

= ihL, — i(—ihLy)
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= ih[Ly + iLy]

= AliLy — Ly]
= —h[Ly — iLy]
= —hL_

7.3  EIGEN VALUES AND EIGEN FUNCTIONS OF RIGID ROTATOR:
Hydrogen Atom:

The problem of hydrogen atom, is a two-body problem (namely of the electron of mass ‘m’
and proton of mass ’M’). Since, we are not interested in translational motion of the atom as a
whole, the centre of mass of the system is taken as the origin of the coordinate system. Since
the system is centro-symmetric, it is most convenient to use spherical polar coordinates. The

problem can be treated (as in the case of rigid rotator) as a single particle problem of reduced

mass | = , with the radial coordinate ‘r’ which is equal to the distance between the

m+M
electron and the nucleus. Potential energy of attraction between the electron and the nucleus
is
— Ze*

r

V:

®)

2

(Here Z = 1 for H-atom. But for generality ‘Z’ is retained. The treatment, then, remains

same for H-like ions He", Li"" etc. with appropriate 1)

Schrodinger’s equation for H-atom is

2 Ze®
vz\l,+h_‘2‘(E+ Yy=0 9)
2
wherevzzizi(r22 + 21, i(sinei)Jr% 82 (10)
r- or  or r-sin@ 06 00 r-sin” @ O¢

It is well known that the operator for the square of the orbital angular momentum

[’ =-h’ (11)
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2
Using this in equation-10, we have | — —[sin Gij + 12 0 .
sin@ 00 00) sin~ 6 0¢

1 0
Vi= — —(F = 12
r* or ( or’ hr’ (12)
L? has eigenfunctions Y m(0,0) and eigenvalues € ({+1) h?
where {=0,1,2,....and £ > m |.
Y"(6,4) = LA+ WY, (0,4); €=0,1,2,...;0 > m| (13)
From equations 9 and 12,
1 0, ,0y | IS 2u Ze®
r L"y+—(E+ =0 14
Tl a) we YT v (14)
Using separable variable technique with vy (r, 0,0) =N R (1) Y (0,0) (15)
2 dR 2,ur2 Ze’ 15
—— E + = LY 16
Rdr( dr h* ( r) th( ) (16)

The LHS is dependent only on ‘r> whereas the RHS is dependent only on 6 and¢. But they
are equal to each other. Therefore they must be independent of r, 6 and ¢; and each must be

equal to a constant, say ‘A’.

: Y) =r= I% Y(0,) =X h>Y(0,)

We know already (equation-13) that A = € (£+1) with £ =0,1,2,....

Therefore equation-16 becomes

dR. 2 ze* 1+ Dn’
@ s e 2 H O R0 an
n r 2ur
I(I+n* .. . :
The term ———— appears as an addition to the potential and can be considered as

2ur

centrifugal potential since its negative gradient is equal to the centrifugal force experienced
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by a particle moving in an orbit of radius ‘r’ with angular momentum +//(/+1)A° .

Alternatively, it may be looked upon as the K.E associated with the rotary part of the motion

(L* /2 I)where I = urz is the moment of inertia.

Equation-17 can also be written as

d’R , 2 dR 2 Ze*  I(I+n?
e Rl ( )2
dr rdr h r 2ur

1R=0 (18)

With the change of the variable as p = ar, the above equation becomes

2 2
zp§+gd_R+[(2uE L 2 Ze ;. z(1+1)

r dp a’h> R opa p’ IR=0 (15)

For bound states (E<0)

Let us introduce a new parameter n and also write ‘o’ in terms of other known

constants as

ocZ% —2uE andn= 2/12262 (20)
With these parameters, equation-19 can be written as
dzf gd—R+[—1+£-l(1+l)]R 0 (21)
dp* pdp 4 p P’
) Lprys R [V RL @2)
The asymptotic solution (for p —0) can be obtained using equation — 21:
Z;f S=R(p) e P (23)
The asymptotic solution (for p — 0) can be obtained using equation 22:
CpR- 1D (pry=0=R(p)~p" 24)

The correctness can be checked by back substitution
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Therefore, the actual solutions for all values of p (or) r may be of the form

R(p) ~f(p)p'eP? (25)

With this substitution in equation 21 or 22, we have

pdzf+(2€+2-p)£+(n—£-l)f=0 (26)
d dp

2

This equation is similar to the Associated Laguere Differential Equation

pL" +(p+t1-p)L'+(q-p)L=0 (27)
ifgq=n+0{ andp=20+1

(or) (@-p)=(m-C-Dand (p+1-p)=02L+2-p) (28)

This differential equation has a polynomial solution when q — p = +ve integer.
~n-L-1 = +ve integer (29)

Since £ =0, 1, 2,...., from equation-1.5.39 we haven=0+1=1,2,3,.... (30)

From equation-21

B - -ha’ B —h’| 2uze’ ’
" 8u 8u | h'n
2 2 4
:En:%;nZIQ,&... (31)

These bound state energies are in accordance with those obtained from Bohr’s theory. The

wave functions are
Watm (1, 6, ) =R (1) 1,"(6,9)

where R ¢ (r) are radial function and Y ¢, (0, ¢) are spherical harmonics involving angular

functions.
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Note: The normalised radial wave functions are as follows:

3 !
22 _l_l ! 27 —Zr [(na, + 27
Rye(r)=- (n )3 r el ,,)Liill 7
na, ) 2n[(n+0)!1" \ na, na

o

wi, o &G D DI et
where [, (P)= 2, (=1 —1— k)12 + 1+ F)!

a, = uez/ h% = Bohr’s first orbit radius.
7.4 SUMMARY:

The summary of the problem of the orbital angular momentum can be written as follows:

i i . Eigen
Quantity Operator form Eigen function o
e |

b s §(0)=—=explimg i

op ( ) oy ( ) m
1 o(.,0) 1 & QL+1)(I ~|m || I(1+1)n?

L2 —?| — —|sind— |+ —- _ TR o,
Lin%@[ %j sinzeasf} ) J ey eest)

7.5 TECHNICAL TERMS:

Eigen value problem for L, and L?operators, Eigen value and eigen function of rigid
rotator and Hydrogen atom

7.6 SELF ASSESSMENTS:

1) Explain about the Eigen value problem for L, and L?operators

2) Explain about the Eigen value and eigen function of rigid rotator and Hydrogen
atom

7.7  SUGGESTED READINGS:

1) Advanced Quantum Mechanics-B.S. Rajput (Pragati Prakasan, Meerut 1990).
2) Quantum Mechanics-Merzbacher E (John Wiley & Sons, New York).

3) Introduction to Quantum Mechanics-Mathews P T (Mc Graw Hill Book Co., New
York).

4) Quantum Mechanics by V.K. Thankappan (Wiley Eastern. Ltd., New Delhi, 1986.

Prof. R.V.S.S.N. Ravi Kumar




LESSON-8

TIME INDEPENDENT PERTURBATION THEORY
(FOR NON - DEGENERATE AND DEGENERATE CASEYS)

80 AIM AND OBJETIVE:

The primary goal of this chapter is to understand the concept of Time Independent
Perturbation Theory (for Non-degenerate system and degenerate system). The chapter began
with understanding of degenerate system, Time Independent Perturbation Theory for Non-
degenerate system, Time Independent Perturbation Theory for degenerate system. After
completing this chapter, the student will understand the complete idea about Time
Independent Perturbation Theory (for Non-degenerate system and degenerate system).

STRUCTURE:

8.1 Introduction

8.2  Time Independent Perturbation Theory

8.3  Time Independent Perturbation Theory for Non-Degenerate System
8.4  Time Independent Perturbation Theory for Degenerate System

85  Summary

86  Technical Terms

8.7  Self Assessment Questions

8.9  Suggested Readings

8.1 INTRODUCTION:

In quantum mechanics, perturbation theory is an approximation scheme for describing such a
complicated quantum system in terms of a simpler one. The main idea here is to start with a
simple system and gradually turn on an additional perturbing Hamiltonian representing a
weak disturbance to the system. As such Hamiltonian can be split into several terms, some of
which may play by far the most significant role than others and such terms can be treated
exactly to obtain analytic solution to the eigen value problem, and the effect of the rest of the

terms can be estimated in an approximate way.

The perturbation theory enables us to calculate these small changes. Similarly

quantum mechanical systems can be treated with perturbation methods.
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In the case of perturbation theory, these are two cases which can treated separately as
(i) Time-dependent perturbation theory (ii) Time-independent perturbation theory. Further
Time-independent perturbation theory is applied to degenerate and non-degenerate system
separately.

The stationary perturbation theory concerns with finding the changes in energy levels
and eigen functions of a system when a small disturbance is applied. In such cases, the
Hamiltonian may be considered as split into two parts, one of them is a major part, which
characterizes the system for which exact solution is obtained for the wave equation; while the

second part is small and treated as perturbation.

82  TIME INDEPENDENT PERTURBATION THEORY:

Now, in this section we study the time-independent perturbation theory applied to a
non-degenerate system. If one energy value or energy level is corresponding to only one
wave function, then such a system is called as non-degenerate system.

We start with the Schrodinger wave equation, which basically describes a single particle, for

obtaining the energy values and eigen functions for the 1% order and 2™ order perturbations.

We begin with an unperturbed Hamiltonian H® which is also assumed to have no time
dependence. It has known eigen functions arising from the time independent Schrodinger

equation which is written as.

Where E] is the energy of the n™ level of the system and corresponding eigen function is

y/ff’). This means eigen values and eigen /functions of the unperturbed problem is E;

EME® L EQand wiQ wo@ wi@. oy respectively.
For the perturbed system, the eigen function v, satisfies the equation.

H\Pn:En\Pn ........ (2)

Where E, are the energy values of the modified Hamiltonian; representing the operator

|:| :(_hz V2+V] ........ (3)

2m
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Let us assume that it is possible to expand H interms of some parameter, giving the

expression.
H=H? + AH®O+ 32HP+ ... 4)

Where HC is the unperturbed Hamiltonian and is large compared with H® (i.e.) the energy

associated with H® is large when compared with the energy associated with H™.

Further it is also assumed that it is possible to expand eigen function ,, and eigen value E,

of the total Hamiltonian of equation (4) in terms of A as.
EmE O+ E D+ 2E P+ L (5)
WnZWn(O)+kWn(1)+kZWn(2)+ ........ (6)
in which the quantities E,“, E,@ .... and w,®, w,® ...is to be found.
Equations (4), (5) and (6) and now substituted in eq.(3), yielding.

[H(O)+kH(1)] [\Vn(o)"'}\«\l/n(l)"'?\«z\l/n(z)"' _____ ] — [En(o)+7nEn(1)+7n2En(z)----]

Which in turn gives

H(O)Wn(o)"'}\«(Ho\Vn(l)"'H(O)Wn(o)) + XZ(H(O)\Vn(Z)'l'H(l)\Vn(l)) R
:En(o)\l/n(o)"'?\‘(En(o)\Vn(l)"' En(l)wn(O))kz(En(l)\l/n(l)'l'En(l)\l/n(l)'l' En(Z)\Vn(O))'l' ........ (7)

The above equation is satisfied for all powers of &, only if the equal powers of A on either

side are equal. On comparing equal powers of A° A%, A2, ----- we get.

For2’, How.=g,%n0 (8)
Foral, HOy@+H®O @ = B, Oy, O4E, Oy O+g Oy, © )
For2?, HOw,@+HOy O = B Oy O+E, @y, @ L (10)

Equations (8), (9), (10) corresponds to unperturbed, first order perturbation and second order
perturbation equation respectively, we can also obtain higher order terms to get more and
more accurate corrections to exact solution. Using the equation (9) and (10) we calculate the

1% order and 2™ order energy values and eigen functions respectively.
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First Order correction to the energy value E,®
Taking the eq.(9) we now obtain the first order corrections to the energy value E,®.
(ie) Ho\vn(l)'l'H(1)\Vn(0):En(O)Wn(l)'l'En(l)Wn(O) ........ (9)

Using the expansion theorem, the perturbed eigen function y, can be expanded interms of

the unperturbed eigen function as

3/—\

i y@ (11)

Substituting this equation (13) in eq(11), we determine the first order correction, we have.

Za H l//r(n)+H l//n ZamEn l//r(n)+E()l//r£) ........ (12)

From the unperturbed system for m™ level, we know
HOYO —_gO @ (13)
so that (13) now rewritten as.

ZamEm O+ HYy ZamEn Wy = Ely 0

(OR)

S anE® QPO 1y 00,0 (14)

On multiplying both sides with y/f’)* from left side and integrating over the space integral, we

get
JZ& EL );/ y dr+jy1n Hy Odr ErEO)J‘y/r(‘O)*y/ﬁo)dr ........ (15)

Making use of the orthonormal condition of the wave function

: : ~
(ie) J.Wrgo) Wrgo)df = 0

where 6; =0 if i#] > - (16)

= 1if i#
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Time Independent Perturbation Theory |

The equation (15) below:

[ OH Oy |

OR

- [Ty e = 1

=y IR ) =H Y

which is first order perturbation of the energy value.

First order correction for wave function y,®

For obtaining the first order wave function y,”), we once again consider the eq.(11) and

multiplying on both sides with y,@" from left side and then integrate over the space integral,

we get the situation as

IZa [E 1// )y/m dr+fwm HO go)dr
e L= T — @9
Using the condition as per eq. (18), we have
U [Er(r?) ] II// l//n Jdr=0

. ~ [y HY
(ie) a, = g ,m=n

(W IH ) H
g0 _g0@ g0 _g
fo O 1y Oe
Er%0) _ Er%o)

0
so that y,® = _ 21:

------- (19a)
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Now after the first order corrections to energy value and eigen function, we get.

= Er(]o) + Afl//r(]o)H (1)y/r(]0)*dr = Er(]o) + AH r(]ln) ----- (20)

o=+ Ay

(0) 1y @), (0)
a1 | |y "HYy Vdr
= 0 _ I " " (0)
l//n jUZ|: E(O) _ E(O) :|Wn

= n

(=" is written omitting m=n)

(O) oq H (1) (O) 12

=y -2 m 1
¥ mz:O Er?1 _ Er? m \ )
Second order correction for energy value E,®

We consider the eq. (2.1.10) for evaluation a* En®. Again the function y,® is expressed as a

linear combination of known function yn@, as

y?=>p (22)

On substituting egs. (22) and (11) in eq.(10), we get

S B + Y, HO = 3L ED D + Y BN + EOY D (2

on using eq.(13), we have

> BaEY —EV WY =D BNl =X e H Oy + EPy Y
=X @, EY - HOY O s Bl O n(24)

Now multiplying both sides of eq. (24) with y,)" from left side, and integrating over the

space integrals, we get.
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N L)W R (R NPT WC PR g s

Applying condition (18) to eq. (25) we get.

E?) =S ap [1r® H Oy O

= S an (WO THY [p) = 3 (g H Y oo (26)

Substituting the value of ., from eqg. (19), we have

S A A VT

0 0
- O _gl
1 HW @
(2 _ ' ' __
or En = ; E(O) B E(O) (27)

Second order correction to eigen function y,?

For obtaining w,%, multiply eq.(24) with w,%)" on both sides from left; and integrating over

the space integral, we get.
S fim| (ESQ)—ESO))VS?)*WSQ)M
- “mzf'l’r(m?)* (Ergl) - H%)f'//r(f)df + EgZ)J.Wrg?)*Wr(IO)dT. ------- (28)

on using condition (18) again here also, the above equation is reduced to .

-0l e oo
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0| £ (0 1y (), (0)
l//m l// —JVm H n dr
and l//n ZJ =0 JE(O)—E(O) go) """" (30)

(=* is used to omit m=n)

In order to get the energy values and eigen functions, the values of E,, E,® and y,®,y,@

are substituted from the equation (17), (27) and (19a), (30) in the following equation.

E® =g+ EY + 22EP®

v, =yl + Ay P2y
Using the above theoretical considerations, the corresponding 1% order and 2™ corrections to
the perturbed system can be calculated.

Proceeding in the above manner, we can evaluate higher order corrections for the perturbed

systems to more and more accuracy.

83 TIME INDEPENDENT PERTURBATION ON THEORY FOR NON-
DEGENERATE SYSTEM:

In this we take up the following examples and evaluate the perturbed energy and eigen

function.
(1) The perturbed Harmonic oscillator.
(i)  The Normal Helium atom.

i) The Perturbed Harmonic Oscillator

Let us consider the wave equation for the perturbed Harmonic oscillator in one dimensions
as.

d2y 2_mE 1ka* ar’® bt
dx?  x? 2 X2 v v

w=0 e (31)

This equation reduces to Harmonic oscillator wave equation if the constants a and b are

zero. Assuming a and b are small, we treat these terms as perturbation.

ie) HY=ad +bx* ............(32)
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Let us calculate the first order correction to the energy En® given by eq.(17)

(ie). EY jwn Vs

fw(‘” ax,y ldr + jwbx w Od 7 ---(33)

©) s even

n

Since the first integral on the right side is an odd function as x° is odd and y©

function, over a symmetrical limits whose value is zero. As such the value of the first

integral is zero (i.e.) first order perturbation due to ax is zero.

Hence EY bJ'y/ Xy OdA .. (34)

-

From the knowledge of the linear Harmonic oscillator, whose wave function is given by .
v (x)=N,H,@E)expl-£2/2] ....... (35)

mk Y
Where & =ax &a :(—2] andh? = me?
X

Substituting (5) in eq. (4) we get.

EY = b.T N2H2(&)e™ (ii](dﬁj
2 a a

b N—fL"Hj(g)_éz EYdE o, (36)

For evaluating this integral, consider the following recurrence relations from Hermite

polynomials.

EH (&) = —H SHLE)+nH, -1(E) .. e (37)

or E°H (&)= %in HE)HNEH, —LE) e (38)
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Replaying n=n+1 and n=n-1 in eq.(2.1.38), we have

§Hn+1(§)=%Hn+2(ij)+(n+1)Hn(£j) .............. (39)

EH—1(¢) = %in A+ (=1)EH, —2(E) e (40)

Now Substituting egs. (39) and (40) in eg. (38), we get.

£2H (&) =%Hn+2(§)+(n+%)Hn(ij)+ n(N—DH (£)......41.

Squaring and substituting in eq. (2.1.36), we have

e _p N T_SZFHH+2(§)+(n+£)+n(n—l)Hn_z(é)} dé ... (42)
a’ s |4 2

From Hermite polynomials, we know that
a 52

[ & H,(©)H,()dz =0 if mem

=2"nJr  ifm=n.......... (42)

Using those result in eq.(2.1.42), it becomes

2
EW=b, N, T 1 n+2)2"? 4+ (n +£)2n!2”(n—1)22”‘2(n—2)!
a’ 16 2

« |X /n{i(n+2)”§2+ (n+3)H2" +n2(n-1)22"2(n—2) [}
o a 16 2

Where we used the normalized function of Harmonic oscillator.

1
HE

(04
1

722"nl

Npvalueas N, =

On simplification, we get
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EW = b.i‘l(an +2n+1)
do

Now the total energy to first order becomes.

3b A*h*
4 mK

E, =EQ+EY=(n +%)ha)c + (2n% +2n+1)

n n

i) The Normal Helium Atom:

Helium atom consists of a nucleus of charge Ze at the origin and two electrons with radius

vectors r; and r; as shown in Fig. (1)

€1
r12

/
€

Neglecting the motion of the nucleus, the Hamiltonian of the system is written as.

*2 72 2 _ g *x2 2 2
Ho| -2 Vige 20| |24 G 22| & 4))
2m I 2m r,

In which V; and V; represent the coordinates of electrons 1 and 2 respectively.

Now, the wave equation for the two electrons is written as

2 2 2
vfwv;wz_qhﬂﬁ_e_},:o ..... @)
h rl r2 r-12

2
e’ . . : - :
The term — is considered as the perturbed term, since omitting this term, the above
r-12

equation can be exactly solved. Hence, the perturbed Hamiltonian is written as.
HY == ....(@45)

Separately writing the unperturbed wave equation into two equation by substituting.
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WO (X, Y,20, %,Y,2,) = 00 (X Y,Z)US (X, Y,2,) v (46)
In polar coordinates ry, 61,01, and 2,02, ¢, to the normal state, the wave function is:
Vidhsoo = Voo (LO6)W 3 (1,0:65) -.....(47)
=u; (1r,0:6,)u’ (r,0,4,)
and the corresponding energy value is:

—EOQ+EM =27%E,, ... (48)

++

=13.6eu

Where Ey is the energy corresponding to one electron = 2;2

The first order perturbed energy function E® is the average value of the perturbation function
H™ over the unperturbed state of the system. Hence, First order correction to the ground

state energy is

2
D= [y O - j [‘/’100100] A7 oo, (49)

* * 2
:”ul(o) ugo) z—zul(o)ugo)drldrz

We know that

in which p;= 221, and radius r, =

VA 5 "%

so that y!9), = e P ... (51)
a

3
0

and space integral dt is

dr =dr,dr, = r’dr,Sing,d0,d¢,r’dr,Sing,d0,dg,
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on substituting (49) in energy equation (50), we get

co_2°%€ ”—e p{——(r +r )}dfldfz ...... (52)

7ra

Evaluation of the integral in eq.(50) may be done by expanding S in terms of legendre
12

Ey

. : 57 .
polynomials and hence the value of the integral leads to a value of for the first order

correction to the ground state.

The energy corrected to first order is then given by:
E=-27°%E, +%Z.EH = —[zz2 —%Z}EH

It may be noted that E® is about 31% of E©, since

EYW 5ZE,, 5
E, 2Z°E, 8Z

The correction is subtractive which is understandable since the effect of the electron-electron
contraction is to reduce the electron nucleus attraction. Then the result holds good for two

electron atoms like Li*, Bs'™*, B etc., ....with Z=345 .......

84 TIME INDEPENDENT PERTURBATION THEORY FOR DEGENERATE
SYSTEM:

An energy level is called a-fold degenerate when these exist a linearly independent wave

functions such as w1, wie....... Wk Satisfying the wave equation.

Clearly, we can explain this if we have o eigen function ’/’I(g)”/’l((OZ)WI((%) ....... W@ corresponding
to the eigen state Elgo). Such that there is no relation of the form.

RS () I reqrl® 0.....(53)

connecting them, then we say that the o eigen functions are linearly independent and this

eigen state E* is o fold degenerate.
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We have shown earlier that eigen functions belonging to different eigen values are
orthogonal, however eigen functions belonging to the same eigen value need not be
orthogonal.

Let, in the perturbed state, the Schrodinger wave equation be given by

Hy=Ey ......... ....(54)

Where H is the perturbed Hamiltonian, E the perturbed energy and  the perturbed wave

function.

Now, the perturbed Hamiltonian can be expressed in terms of unperturbed Hamiltonian H®

as.

H=H®+AHY 4+ A?H? ................(55)

Letus assume y %),y %)......y ©) are not orthogonal. We have,

0, 00 €0, 000y - €0 0oy ) £[0), 0

Consider the linear combination X}
cl‘/’g)+ Czt//k(oz) ........ cawg)zxk(o) ........... (56)

so that we have

HOx &0) - ClElEO)q/g) +C 2E£0)q/l£02) t ot Cy E&%)W&%t) ...... (57)

= E, Xko
which proves that the linear combination X is also an eigen function corresponding to the
same degenerate energy value.

We can choose the constants in eq.(56) in an infinite number of ways, we can construct
infinite number of such linear combinations, all of them being eigen function of the same

eigen value. There is nothing unique about any set of eigen functions for a degenerate level.

For instance, we can select the following a linear combination:
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N
Xk(g)zcn'//k?)"'clz'//koz)"' """" +C10"’V‘£2‘)

0 0
lez) _ Clekl i szl//kz ........ +C2al//l£a) > ........ 58
Xk(g)ZC 1‘//k?)+Co,z‘//koz)7L -------- +Caav/k(g)

which may be represented as :

These combinations are entirely equivalent to the original set w0,y 9...w©. The

transformation expressed by eq. (59) is known as linear transformation with constant
coefficients. With this background about degenerate states, we now discuss the perturbation

for such states.
The wave equation for unperturbed system is:

HOo © 2 E@y © L iiiiiiiiin......60,

There are severed eigen states for this unperturbed system, each of them corresponding to

several degenerate eigen function as

Energy value eigen functions.
EV v v W )

El(o) y/ég) : l//l(g) perreenen e y/é?

EC @ yO O

We can assume the linear combination of eq.(59), provided the function yy is:

Wkl =Wkl + M//I((ll) + Azwl(j) ............. (6 1)
and Ek|=E|£O)+/lE|£1I)+/12E|£|2) e (62)

Now substitute the values of H, i, Ex from equation (55), (61) and (62) the perturbed

equation given by
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Hy, -E,w, =0 ................(63)

We have
(HO+AHY + 22H® 4 X O+ Ay 422 @ 4 )
(EI? +/1E|(<I)+/12 |(<|) ..... ) (x(o)ww(l)mzw
Rewriting the above.

(HXO—EOX )+ A(HW® + HOY O —Eo® —EOXD)+...=0 ..., (64)

We now take up the first order perturbation equation, which can be obtained by equating

coefficient of A equal to zero.
ie) HyW+HYWO -EOWyP -EPX® =0 (65)
Letus expand " as

t//k, chlkllly/klll A (<19

'S
On substituting equation (66) and (59) in equation (65)

We get
Z Cklklll H (O)V/ IE?I)l + Z Ckl H (l)l// 15|0) Z Ck|k1|1 E (O)W (?)1 ) Zl.clllE'gl')WIE(ljl) =0
1=1 PR =
Since Hy %) = EPw) we have after recommendation.

> cklklll[ 0. Eﬁo)}V(o)l - % )0, e (B7)

1
| S R Y

Multiplying both sides with W(Q)* from left, and integrating over configuration space

K
k12| Cklklll[ io) EEJWI(SI) WI((%?ldT
= j’z;lc“l I L PR (1)%1')14 .............. (68)
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when k'zk, ng?)wl((fﬁldf:o and when k=k*, EIE(,))—EIE(.)LO L.H.S. reduces to zero.

So that eq.....(69)

We use the notation

and since ¥, %.....% are non-orthogonal.

we introduce the symbol a1 - Mﬁ?)wl((fl)l)df .......... (71)

Using the above symbols, eq. (69) becomes

)

a 1
> Clll(EkIAjll - Hjll):O

I =1

or % Clll(Hgll)l—El((ll)Ajll):O RN (3
| =

As there are o eigen functions y*,y9......[%) we can similarly get o equations like eq.(72)

for j=0,1,23.....cc. EQ.(72) represents a system of o homogeneous linear simultaneous

equation in o unknown quantities
In the expanded from, these o equations are.

(H111 - Elgll)An)Cn + (Hl(;) - Elgll)Alz)Cﬂ to + (Hl(;) - Elgll)Ala )Cla =0

(H3, - EI((lI)A21)C21 + (Hg - EI((lI)Azz)sz ot (Hglo)[ - E{Il)Aza)Cza =0 een.. (73)

(Holcl - Elgll)Aal)Cal + (H0(512) - Elgll)AaZ)CaZ to + (Ho(ctz - Elgll)Aaa )Caa = 0

To understand how this set of equations is solved, a knowledge of determinations and their
use in solving such equations is necessary, if such a set of homogeneous linear equations is to
have non-zero solutions is that the determinant of the coefficients of the unknown quantities

vanish i.e.
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HY —EYA, HY —EYA,.... HY —EWA,
HY —EVA, HY —EWA ... HY —EWA,,

HE - Efa, HE ~EUA,,

a2

Using the condition Aj'=0 if j=I"

= 1ifj=y.

We have

(HL-EMYHY.o .. HY
HOHY —EYW) oo HY
HOHY oo HE - EY

=0 (74)

cererren(75)

equation (74) and (75) are known as secular equation.

If the secular equation is in diagonal form that is all the elements except on the principal

diagonal are zero, then the initially assumed eigen functions {%.4(9)...,9) are themselves

the correct zeroth order wave functions.

The secular equation in which all the elements on the principal diagonal is in the form.

HO _ Elgll)

11

0

oHY
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then its expansion is
(HY - EHE - B ——————-
The roots of the equation are:
S

In such a case, all the coefficients Cy1, Cjo

........ Ci,. turn out to the zero.

Equation (25) may be written in another useful from by making use of the substitution.

_H©
H.o=HY+AHY or (.1):—H“ A
ij ij ij ] l
_EO
and E, —E®+2EY  or EY =%
After taking at 1/A and using.
H0) =0 if j!
= E ifj=l
With the above eq. (75) becomes
Hi1-Ex Hio - Hio
Hz1 Hoo-Ei ------mmmmmmmmmme- Hza
Hal HaZ """"""" Hococ'EkI

...(76)
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Observing the equations (24) and (25), we note that if a perturbation has non-vanishing
matrix elements Hj; among a set of degenerate states, then it will change the wave function in
the zeroth order. If the set of wave functions is non-degenerate on the other hand. The
perturbation effect the wave functions only in the first and second orders.

85 SUMMARY:

Perturbation theory is an extremely important tool for describing real quantum systems, as it
turns out to be very difficult to find exact solutions to the Schrodinger equation for
Hamiltonians of even moderate complexity, most of the Hamiltonians to which we know
exact solutions, such as the hydrogen atom, the quantum harmonic oscillator and the particle
in a box, are too idealized to adequately describe most systems. Using perturbation theory,
we can use the known solutions of these simple Hamiltonians to generate solutions for a wide
range of more complicated systems.

86  TECHNICAL TERMS:

Time Independent Perturbation Theory, Time Independent Perturbation Theory for
Non Degenerate System, Time Independent Perturbation Theory for Degenerate
System.

8.7  SELF-ASSESSMENT QUESTIONS:

1) Explain about the Time independent perturbation theory.
2) Explain about the Degenerate system of Time independent perturbation theory.

3) Explain about the Non-Degenerate system of Time independent perturbation
theory

88  SUGGESTED READINGS:

1) Quantum Mechanics - G. Aruldhas. (Prentice-Hall of India)

2) Quantum Mechanics-Theory and applications - A.K.Ghatak and S.Lokanathan
(Macmillan)

3) Quantum Mechanics - Gupta, Kumar & Sharma.
4) Quantum Mechanics - E.Merzbacher.

5) Principles of Quantum Mechanics - R.Shankar (Plenum Press)

Prof. G. Naga Raju



LESSON-9

APPLICATIONS TO NORMAL HELIUM ATOM AND STARK EFFECT

9.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of Application to normal helium
atom and Stark effect. The chapter began with understanding of Application to normal helium
atom and Stark effect. After completing this chapter, the student will understand the complete

idea about Application to normal helium atom and Stark effect

STRUCTURE:

9.1 Introduction

9.2 Application to Normal Helium Atom
9.3  Application to Stark Effect

9.4 Summary

9.5 Technical Terms

9.6 Self Assessment Questions

9.7 Suggested Readings

9.1 INTRODUCTION:

The Stark effect refers to the splitting and shifting of atomic energy levels when an atom is
placed in an external electric field. In the case of a normal helium atom (He), which consists
of two protons, two neutrons, and two electrons, the Stark effect offers valuable insights into
its electronic structure and behavior under external influences. Helium is particularly
interesting because, unlike hydrogen (with only one electron), it has two electrons, leading to
more complex interactions and a richer variety of phenomena when subjected to an external

electric field.

9.2 APPLICATION TO NORMAL HELIUM ATOM:
The Normal Helium atom:

Helium atom consists of a nucleus of charge Ze at the origin and two electrons with radius

vectors r; and r; as shown in Fig. (1)
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EP)

_—

€,

Fig. 9.1

Neglecting the motion of the nucleus, the Hamiltonian of the system is written as.

%2 72 2 %2 2 2
Hz{_;t Vlvlz_ze }{ A vg_ze }Le_ __________ (1)

2m 7 2m r, T,

in which V; and V, represent the coordinates of electrons 1 and 2 respectively.

Now, the wave equation for the two electrons is written as

2
ze

2 2
Vfl//+V§1//+2—T E+2 +2 % ly=0 )
h n o n

2

e’ . . . o .
The term — is considered as the perturbed term, since omitting this term, the above
4T

equation can be exactly solved. Hence, the perturbed Hamiltonian is written as.

Separately writing the unperturbed wave equation into two equation by substituting.
W' (0 012,,0,2,) = 0] (0,25 (X, 0,2,) ==mmmmmv 4)
In polar coordinates 1, 01,01, and 1,,0,, ¢, to the normal state, the wave function is:

'//1(83,100 = l//IOOO (7'101¢1)V/1(8()) (r,0,0,) - 5)
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=u] (10,4 )y’ (1,0,¢,)
and the corresponding energy value is:

El((())()),IOO = El(o) + E§°) = —ZZZEH __________ (6)

Where Ey is the energy corresponding to one electron = m;z =13.6eu

The first order perturbed energy function E"" is the average value of the perturbation function
H" over the unperturbed state of the system. Hence, First order correction to the ground

state energy is

* 2
1 1 e 0
E( ) = J-W}([O) H( )W}(IO)dT = J.E[WI(O)O’]OO]ZdT __________ (7)
* * 2
0 0) € 0) (0
=J.Iu1( ) ug) r_ul( )ug )drldrz
12
We know that
-
Z3 2 =( 2)
u” =y, ( 3J e )
0
Z 2
in which p;= i and radius 7, =%
a, 4r " me
73 %A
so that '//1(83,100 e )

a,
and space integral dr is
dr =dr,dr, = 1dr,Sin0,d0,d¢,r; dr,Sin0,d0,dp,

on substituting (2.1.51) in energy equation (10), we get
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Z%* 1 27
EY == ”—exp - = +r)drdr, = - (11)
4D a,

Evaluation of the integral in eq.(2.1.52.) may be done by expanding 1 in terms of legendre
"

E,

5Z
polynomials and hence the value of the integral leads to a value of for the first order

correction to the ground state.

The energy corrected to first order is then given by :

E=-27°E, +%Z.EH = —[222 —%Z}EH

It may be noted that E" is about 31% of E), since

EY 57ZE,., 5

E, 27°E, 8Z

The correction is subtractive which is understandable since the effect of the electron-electron
contraction is to reduce the electron nucleus attraction. Then the result holds good for two

electron atoms like Li", B, B etc., ...with Z=3,4,5.......

9.3 APPLICATION TO STARK EFFECT IN HYDROGEN ATOM:

Stark effect of Hydrogen atom:

When an atom is placed in a uniform electric field, the energy levels are shifted. The shifting
of energy levels produce a splitting of spectral line, called stark effect which was first

observed in 1913 by stark in hydrogen atom.

Let us consider the first order change in energy levels of a hydrogen atom due to an external
electric field of strength, E, along the positive Z-axis which is polar axis whose coordinates

are Z=rCos0.

For the hydrogen atom, the unperturbed Hamiltonian is given as

aO_-2p2 d (12)
2u r

Where p is the reduced mass.
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Now considering the perturbation H" is taken as
H(l) =+eEz=+eErCos@ = =mmmmmmme- ( 1 3)

in which e is electric charge and the external electric field E.
In case of hydrogen atom, potential energy and wave function are spherically symmetric.
Now, the parity of the spherical harmonics depends on the azimuthal quantum number % as (-

1)1, which gives odd parity, if % is odd and even parity when 1 is even. Further, even if

parities were different, matrix elements connecting states with different m values also vanish,

making the interaction impotent to split m-degeneracy.

For the ground state of the hydrogen atom(n=1,1=0,m=0), the wave function is spherically

symmetric and has the same form for all orientation, there is no degeneracy.

The ground state wave function for hydrogen atom is

w100 = R10 (r)Yp0 (6,9)

b

Jin

=R, (r)

The perturbation H" has the odd parity according the eq. (15)

Hl%%) 100 =) V’looH(l)V’IOOdT =0

In order to understand the above, we have
H" = +eErCos0

The first order perturbation energy in the ground state of Hydrogen atom is.

; 2.
H 1(00,100 =+eE[[[y100(+rCos Q) o1~ Sin6d0drd

where y190=R1o Yoo (0,0)
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and Y00(6,¢):N00P00(C059) (I)O((I)):;

N

o) = ﬁ pl(Cos) =1

1
22 % - 1
so that W100=[—} ..exp(—r).—

a() A/ 47[

alrrw 2r
1w
Now /7~H1((1)2),100 = +€EI IIrCosH—B.e 72 Sinbdrd0d6 = 0 oeeeeeee (16)
000 a

Thus we observe that there is no first order stark effect to the ground state of the hydrogen

atom.

The first excited state (n=R) of hydrogen atom is four-fold degenerate since it has the (I,m)
values (0,0), (1,0),(1,1) and (1,-1). Let the electric field E is applied along the positive Z-axis
which interacts with the electric dipole moment giving the perturbing Hamiltonian,

HY=e¢EZ=erECos0.

With the help of the quantum number (n 1 m), the four-fold degenerates states are specified as

w(nim):w200,¥210,¥211¥21-1

As the degeneracy is four-fold. We have to evaluate sixteen matrix elements of H" in the

perturbation theory for degenerate states.
Clearly, we write the above four wave function as.

Yoo = Ry ()Y, (0, 9) :LRzo (ry - (17)

N
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Wi =Ry (r)Y,(0,9) = iR21 (r)Cos@  ----—----—- (18)
Na4r
3 i
Wou =Ry Y, = —R, (r)Sinbe” - (19)
&
I
va1-1=Ro—1= mSinH e Ryy(ry  mmmmmm—ee- (20)

In these 709 has even parity and 210, V211, and ;.11 have odd parity.

Writing down the secular equation with the sixteen matrix elements, we have.

(1) 1 1 (1)
H o200 = E H00211 H200,211 Ho2141

H211 1,200 Hél)l 211 —-E H§1)1 210 H§11)1,21,71 """"" (21)

H211o,200 Hgll)o,zn H§1)0211 E Hgl)()ZI 4

H21,-1,200 HSI?—I,ZH HSI?—I,ZIO Hgll),—l,Zl,—l - E(l)

Since 200 and yago have even parity. He element of the secular determinant.
Hg))o,zoo = J-l//zooH(l)‘//zoodT =0 - (22)

Similar to the equation (22)

In a similar way,

(1) (1) (1)
H211,211a H210,210 ) H21,—1,21,—1 are Zero

That means the four diagonal elements of matrix are Zero since they correspond to same
parity.

Now the off-diagonal elements between states of different in values (i.e.)

1) 1) 1) 1) 1) 1) 1)
Hgll,ZlO’ 21],21 1’H§1Q211’H§10,21 1’ 21 1211’H£], 1210’H§0Q211’H§1L200’H§00,2], l’and@L—l,ZOO
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are also Zero since.

I:HeXp[i(m1 - m)H]d¢ =0ifm'sm = e (23)

Hence, out of the sixteen matrix elements, the only two matrix elements remains non-Zero
1 1 ) . .. .
are H éo)o,zloandH 210200 These two are again symmetrical, it is enough if we valuate one

element out of the two.

Let us consider.

HSJ)O,ZIO = IW;OOH(I)WZIOdT """"" (24)

For which R, /r)

1
Va0 = E
The evaluation of {7 is taken up from the radial part of the hydrogen atom wave function.

1

3 2
Ry (r) — 27 (n=1-1) .exp(—Zr).(ZZrl)‘<2[+1(£)
na Zn{ (n+)! }3 nag~  nag \ 1+l nag

Which in turn gives

| 3 _ _
Rzo(r)=(2—>5 2——)exp(=—)

ag o-L 2aq)
a0

so that

Vo = 77— /— 200

In a similar way

/3
Voo = ECOS@RN(’")
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_ |3 Ly o -y
_\/;COSQ(R%) .aoﬁ.exp(zao) (26)

Where ay is the radius of the first Bohr orbit

Substituting the values of (36) and 37in eq.(35) gives.

HZ(B)O,ZIOZ—’_ el i“:_of( 1 )%.(2—L)exp(_r)( ! )% r :I}
0 a, 2a,

Var N4z 2a, 2a, a0\/§
exp( 2_ar ).r dr ][jf Cos *0Sin 6d 0] fd(zﬁ]} ---------- (38)

Now

T T 3 _
[ Cos 20Sin 046 = —[ Cos *0d (Cos 0) = - Cos 0 _ =1 _L)_2
0 0 3 3 3 3
2z
jd¢:2z

0
a % 7
J{L ) (2—L )% 4 2eo.r3dr.
0 2a0 aO ao\/g

1 1|4 ™ 44

=l—J. 2—x) e .apx apdx. . _r

[2(10 >3 ao‘/g[(])( 0* “0 using x_Z

- % {ZTx“ec;’Cx—jixs zdx]
0

83 .

a

—d
= 48 -120 |= 042 = -3./3
o5 8120 J= a2 =334,
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W H) 0 = \/_ i 27:( 3./3a,

=—3a,eF’, Now, the secular equation becomes

(nlm) 200 210 211 21,-1
200 -E -3ageE -0 0

210 -3aeE  -E" 0 0 =0
211 0 0 -EY 0

21,1 0 0 0 -EY

It can be observed that the states 200,210 are affected by the electric field and the sates 5,

1.1 remain unchanged.

The eigen states corresponding to the eigen value 3eEag is (Waoo-W210)/N2 and the eigen
state for —3eEa is (\|/200+q/210)/\/2 . The energy along with the eigen states of the n=2 state of

hydrogen atom in an electric field E along the Z-direction is illustrated in Fig.2.1.

Elo +3eEay (W00 — o)

EiO(y210,921-1)

i
\ E, " —3¢Eay W00 + V210 )\f2

Fig. 9.2

Figure 9.2 Energies and wave functions of the first excited state of hydrogen atom in an

electric field E.

This means that the hydrogen atom in the first excited state behaves as though it has a
permanent dipole moment of magnitude 3apeE with three different orientations-one state

parallel to the external electric field, one state anti-parallel to the field and two states with
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Zero component along the field. The state’sy,;; and ;1.1 do not posses dipole moments and
therefore do not have a first order interaction with the field. Since the ground state of all
atoms and nuclei are very likely to be non-degenerate, it is expected that an atom or nucleus
in the ground state do not possess a permanent electric dipole moment. This means, atoms
and nuclei in the ground state can possess electric charge, electric quadrupole moment,
magnetic dipole moment etc., but not magnetic pole, electric dipole moment, magnetic

quadrupole moment etc.,
9.4 SUMMARY:
The Stark effect in a normal helium atom, which has two electrons, leads to the shifting and

splitting of energy levels when exposed to an external electric field.

The Stark effect in hydrogen refers to the shifting and splitting of the atom's energy levels
when an external electric field is applied. Since hydrogen is the simplest atom, consisting of
one proton and one electron, the Stark effect in hydrogen is easier to analyze compared to
multi-electron atoms. Here are the key points of the Stark effect in hydrogen:

9.5 TECHNICAL TERMS:

Normal helium atom, Stark effect in hydrogen atom.

9.6 SELF ASSESSMENT QUESTIONS:
1) Explain about the application to a normal helium atom.

2) Briefly explain about the Stark effect in hydrogen atom.

9.7 SUGGESTED READINGS:
1) Quantum Mechanics- G. Aruldhas. (Prentice-Hall of India)

2) Quantum Mechanics-Theory and applications- A.K.Ghatak and S.Lokanathan
(Macmillan)

3) Quantum Mechanics- Gupta, Kumar & Sharma.
4) Principles of Quantum Mechanics- R.Shankar (Plenum press)

5) Molecular Quantum Mechanics- P.W.Atkins.

Prof. G. Naga Raju
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THE VARIATION METHOD AND WKB METHOD

10.0 AIM AND OBJECTIVE:

The primary goal of this chapter is to understand the concept of the variation method and
WKB method. The chapter began with understanding of variation methods, Application to
ground state of Helium atom, WKB method. After completing this chapter, the student will
understand the complete idea about the variation method and WKB method.

STRUCTURE:

10.1 Introduction

10.2  Variation Method

10.3  Application to Ground State of Helium Atom
10.4 The WKB Method

10.5 Summary

10.6 Technical Terms

10.7  Self Assessments Questions

10.8 Suggested Readings
10.1 INTRODUCTION:

Under some circumstances, perturbation theory is an invalid approach to take. This happens
when the system we wish to describe cannot be described by a small perturbation imposed on
simple system .in quantum electrodynamics, for instance, the interaction of quarks with the
gluon field cannot be treated perturbatively at low energy because the interaction energy
becomes too large. When faced with such systems, one usually turns into other
approximation schemes, such as the variation methods and W.K.B approximation.

In the variation method, one has to make some guess of the wave function, they apply
the variation principle to improve the guess of the wave function and obtain the upper bound
for the ground state energy. Here we do not try to find a correction to already known



\ Centre for Distance Education 10.2 Acharya Nagarjuna University \

unperturbed eigen value and eigen function, but determine the total eigen values and eigen

functions as close to the experimental values as possible through a variation calculation.
10.2 THE VARIATION METHOD:

(&) The variation principle and theory:

The Variation Principle:

The essential idea of the method is to evaluate the expectation value <H> of the

Hamiltonian operator H of the system with respect to a trial wave function. In order to
explain the principle involved to evaluate the energy of the ground state, let us consider

the wave equation as

Ay =Ey (1)

A n? :
Where the Hamiltonian operator H = — 2—V 2 +V (r) and E is the energy value.
m

Multiplying eq.(2) with and integrating over all variables

Jl//*Hl//dT Zjl//*El//dT = Ejl//*l//df

_Iw*der
B Iw*wdr e (2)

if ¢ is normalized wave function

The equations give the expectation value of the energy of the system in the state represented
by the wave functiony .

The approximate wave function y can be obtained by variation principle. In this approach,

we guess a wave function and calculate the energy value .The energy of the system is correct,
if the trial wave function is correct. In accordance with principle of variation, if the true
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energy is Eq and the correct wave functiony,, then any other acceptable wave function i,

indicates which trial wave functions is close to the true wave function to give the best energy

value. For a proof of the theorem, express the trial wave functiony as a linear combination of

the true (but unknown) wave functions

Yo=a,f +a,p, tazd + . a,P, @)

Where a4, oz, 03, ......... on  are the arbitrary parameters that can be varied to minimum

in the energy .for our convenience, let us take

\P:Otl(j)1+0(,2(1)2 .......... (5)

Substitute this in equation (2), we get

I(a1¢1 +a,0,)H (¢, +0a,,)de
I(a1¢1 + a0, )y +o,,)de

o Eled[diedrr2ea,[goderal[gigde]

= of [§;He,dz + 20,0, [, H,d7 + & [ gy Hp, ... 6)

As we require the minimum value of E, it is necessary to minimize the energy E with respect

to the parameter oz and o

Differentiating with respect to o, we get.

E[Zaljmdr+2azj¢1¢2dr]+ o 44 dr+20,0, [ §]¢,dr +
o, j¢;¢2dr]:2alj¢;H¢ldr+2a2j¢lH¢2dr] ........... @)

In a similar way, differentiating with respect to a.;, we get
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El20, [ ¢; 6,07 + 20, [ 4,9, d7] +§T'Z[af [4:0,dr + 20,0, [ §4,d7 +

o)’ [ ¢30,d7] = 20, [ 4 Hp,d7 + 20, [ $;Hg, d1]........ ®)
in order to minimize E with respect to a3, and o, the

O, _ E
oo, " Oa,

(

), = O 9)

and using the symbols

Hij:J.‘/Si*H‘pidT PN (X0)

Aij = J.¢i*¢jd7
Applying the equation (2.3.9) and (2.3.10) to (2.3.7) we get

(Hy, —EA,)a, + (Hy, = EA)aty = O (11)

Similarly, from the equation (2.3.8), we get after minor rearrangements for

Hi,=Hzand A1,= A;, for convenience and symmetry.
(Hy —EA,))a, +(H,, —EA,,)a, =0............... (12)
Equation (11) and (12) together are called secular equations.

In our case, we consider only the first two terms of the variation function v, we can

generalize to other term also.

Equation 11 and 12 can be solved for ad provided the determinant for trivial solution is

H, —EA, =0 . (13)
H11_EA11
H 21 T EAZl sz _EAzz
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in a more general way, for n independent functions the secular equation in the form of

determinant is

H, —EA, H,—-EA,.in H,, —EAln“
H,,—EA,, H,—EA, ... H,,—EA,,
= 0
H, —EA, H,—EA .. H. —EA.,

10.3 APPLICATION TO GROUND STATE OF HELIUM ATOM:

Application to the ground (normal) state of the Helium atom

As an example, we take up to obtain the energy of Helium atom in the ground state.
Helium atoms consist of electrons of charge ‘-e’, and nucleus ‘+Ze’.

The total potential is

V=Vi+Vo+V; e (14)

Where the potential energies are given as:

2 2 2
Vlz_ze ,_Ze ,e e (15)
I r, Mo
-e r
-e
rl\/
r
Ze

Fig 10.1: Helium Atom

Neglecting the nuclear motion, the Hamiltonian is represented as
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In atomic units, representing the Bohr radius ~ % = A7r2me?

2 Z 2 Z 2 Z 2
H= —le—[vf +V§]— L
2 a, a,R, a,R, a,R,

The Hamiltonian becomes:

Here €/a, is the atomic unit of energy.

In Atomic units H takes the form

For the case of Helium, suppose one of the electrons is labeled 1, in the ground states, and the
other labeled 2 is in the exited state 2.The ground state electron experiences the full

attractive force of charge “+2e’ .
The wave function is represented as

Even though the electron 2 does not experience attractive force from nuclear, in choosing the

3
pO = L oem CHTR I 19)
T
(0)_izg -ZR, 20
Y, _\/_ e (al.) . (20)
T

trial wave function for electron 2 is taken as

These considerations show that good trial wave function must be of the form.

p=WOPO =~ (7f R (21

1
T
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Where Z! is between 1 and 2.

Since V19, ¥,© are normalized wave functions for hydrogen like atoms, ® must be a

normalized wave function.

The expression for H given in eqg.(20) is now modified by adding and subtracting
(Z/R1+ Z'/R3) becomes

R, R, R, R, Ry
:Hé—(Z—Zl{‘l i}ui ........... (22)
Rl RZ 12
1 1
Where,H, = —E(Vf +V§)—Z——Z—
2 R, R,

Since @ is assumed a normalized function, the variational energy E¢ is given as

Let
I LT — (23)
Wehave,
1 1.1 1 1
H¢:H0¢_(Z_Z {R—1+R—2:|¢+R—12¢ ........... (24)

Which is similar to two individual hydrogen-like atom wave function; whose energy is

Hyp=Esé
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2 N1 o1 1
He=—(z"V¢-(z-2 {Rl +R_2]¢+R—¢ ........ (26)

Now the variational energy Eq of eq (23) becomes.

E, :j¢*{—(zl)¢—(z —zl{Ril+Ri2]¢+Ri }dr

12

Since @ is normalized.

[pp*dr=1 .. (28)

And we write other integrals as.

[_ 1\ —Zl(R1+R2)]* 1\ )
I, :I (Z ) Z (Ril-i_%]@e_z (R”RZ)dz'ldz'2

n? R, R,

_ _(21)6 l:Ie_zzl(RﬁRZ) dr,dr, +derldr2 +:| ..... (29)

The first of the integral in the integral I, is
—27(R,) .
Y 1J'e—2z R,
I:21
-2Z(R,)

:IGR

1

RZR 06, sinb,6; j e ZZ(RIRZYR, 5iNn0,00,06,

Using the knowledge of gamma functions and other simple integrals.

e—zlel

I= 167" RZdR,, [e "™ R7dR, ......(30)
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Similarly, the second integral in I, becomes.

2

1= G

2 (2

E, =—(2*) —(z—zl)éil+§z1
1)2 1 91

=(z'f - 22z +22".(au)...(35)

Inserting these values of integral in eq29

:@ 2”25:221 ....... (32)
7 (z*)

Inserting these values of integral in eq29

Il

Now the remaining integral in eq.27 is

l,=|¢g —
[¢ R fT
1 —27'R ,—27'R,
:(Z 2) J.e e dr,dz,.....33)
4 2
(fs x5,
l,= — 5(21)5 —§Z ...... (34)

The above integral can be evaluated using the knowledge of Legendre polynomial and

electrodynamics which yields the value.

Using the results of eq.32 and eq.27 We get
I =167 [e R, dR, [e* *IR]dR,

:16ﬂ2|:4 ( le)z 4( 211)3} (2”12)5 .......... (36)

to minimise Eq with respect to variational parameter Z*, we set dE/dZ'=0.

This gives
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d—Elzzzl—zz+§=o
dz 8

WhergZ' =7 -5/16......... (.37)

Thus Z'is taken as the effective nuclear charge of helium. The factor 5/16 is called the

screening factor.
Substituting the Z* in the energy equation (36)

5. 5
Eg =(ZD)°-22' Z*+ )+ = 74 a
¢ =(Z) ( 16) g

=-(ZN%U.ciieeiee o (37.0)

=2 (Z" 2 E1 (H) [ E,orE, (H)=-1/2]

which is ground state energy of hydrogen atom in the 1s orbital

=2(Z-5/16)°E1s (b)

=2 (%)ZElsH (. Z =2 for Helium atom)
27
=2 (E) (-13.60 eV) (-.E1=-13.60 eV)
=-77.45eV

Which is the approximate ground state energy of helium atom. Further, the energy of the
ground state He" ion is 4E35(H) = -54.40 eV.

Hence the ionization potential of helium is (-54.40) — (-77.45) = 23 eV.

The experimental value is 24.58 eV.
By introducing more parameters in the trial function, the accuracy may be improved further.

104 THE WKB METHOD:

(a) Validity of the Method
(b) Principle of the Method

(c) Connection formula for penetration of a barrier.
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Introduction:

Wentzel-Kramers-Brillouin (WKB) approximation is a final type of time independent
approximate calculations. It applies to only situations in which the potential energy is slowly
varying function of position. Problems of one dimension and also of three dimensions

reducible in one dimension (radial) are solved by this method.

A slowly changing potential means the variation of potential energy V(r) slightly over several

wavelengths (De Broglie waves) of the particles.

The De Broglie wavelength associated with a particle moving with energy E in a region of

potential V is

a= D= #1 ......... (38)
p

[2m(E -V)]z
Since % mv=E -V

m?v?= 2 m (E-V)

p=mv= 1/|2m(E —V)|

The propagation constant

k= 27” —@m/ 1) [E-VO)]™2

2

= e (39)

P=nk =

:1'|-cj

Mathematically slowly varying potential can be expressed by the conditions

1 dk

—l<<1
h® da

Substituting value of k from (39), we get

oV
v %
OX OX <<1

[2m(E -v)J*" [ (E-V)]

fim
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This equation gives the validity of W.K.B approximation.

Principle of the Method:

W.K.B. method consists of in introducing an expression in the powers of. Thus Schrodinger

equation (at least in some regions of space) is reduced in its classical limit. However, the

method has wider range of applicability than the classical approximation, because this

procedure can be carried out even in regions of space where classical interpretation is

meaningless (region E <V is inaccessible to classical particle).

Let v (x) be the wave function satisfying Schrodinger’s equation.

Let the solution of egn. (2.3.41 ) be of the form

@ =Ce 42

Where C is constant, ¢ (x) is yet, an undetermined function of x, we have

9P _ cpiswm 99

X " X
0%
0%¢ _ C i (aﬂ ip() /1 ——
= 2 el — gt 2 e 43
o h x) X 43
now substituting — ¢ =¢ and 2—¢ = ¢ equation (43) takes the form
X
0’0 - C gown w7 4 ¢ Lgowm ¢ (44)
x? h2 h

2

Substituting values of ¢ and Z (f from( 42) and (44) in (41), we get
X

_;2 piv0/n ()7 4 Cii‘z ig0o/n @ + 2 [E V(x)]Ce'W)’h—O

or ;—zeww [— ¢ +ihg'+2m(E —V)] =
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As y = Ce"™'" % 0, therefore above equation gives
ihg"'—¢'>+2m(E-V)=0 .......... (45)
To get an approximate solution of (4.8), we apply W.K.B. method and hence expand

¢ (X) in powers of 7 i.e.,

B0 =9 () + 16,00+ 4,0 -~ (46

where the subscripts ¢’s are independent of 7. Let us assume that on account of the

smallness of 7, the first two terms in equation (46) give a sufficiently good approximation to
0.

Differentiating equation (43), we get

800 =500+ s 00+ ¢, (09 +-——

B0 =+ 00+ (0 + -

Substituting values of ¢* and ¢" from (47) in equation (45), we get

in [4 +h¢5"'1(X)+hz¢'2(X)+——]- [¢5(x)+h¢l‘(x)+’§¢-2(x)+__]2+ 2m(E —V) =0....(48)

Collecting coefficients of various powers of 7, we see that up to second order in 7, we see
the result is

[2m(E -V) -5 1+ 1lig",—20's ¢, |+ n*[ig ]+ n°lig, 424, 4,10 ....(49)

in order to that equation (49) may hold identically in 7, the coefficients of each power of

h mustvanish separately. This requirement leads to the following leads series of equations.
2m(E -V)-¢'5=0 (a)
i¢",—2¢', $,=0 (b) 2 (50)

ig,"~¢'1—¢'0 ¢"',=0 (c)
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and so on..

These equations may be solved successively. That is the first equation, ¢ in terms of

(E-V), the second equation defines ¢ 1 the third defines ¢, in terms of ¢, and ¢ etc..

From equation (50), we obtain,
=t J2m(E-V) ......... (51)

integration of above eq. gives,
g =x[J2m(E-V)dx ... (52)

where Xo Is an arbitrary fixed value of x.
From equation(50) we obtain

"2,

Integration of above equation yields

¢, = é log ¢0 +C, (53)

Where C; is a constant integration. This result is inconvenient if ¢; is negative. Therefore

keeping in mind the log of negative of function differs only by an imaginary constant from
the logarithm of absolute value of the function. We replace eqn.53 by

¢1:%Iog‘¢;‘+cz UUUN (-7

Where C; is an arbitrary constant.
Similarly
&)
m [
_1 oX

L
73 [2m(E -V )] 4;[[2m(E V)

From equation 22 we see that ¢, is represented as logarithm of ‘(150 ‘ therefore it is not, in

general, small compared with ¢,. Consequently ¢, and ¢, both must be retained. On the
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other hand from eqn.(56) we see that ¢, will be small whenever dv/dx is small and(E-V) is
not too close to zero. Further it can be seen easily that the smallness of the higher
approximations (¢, , ¢, ....etc) requires the smallness of all derivatives of V. Thus the W.K.B.
approximation will be suitable in cases where V is a sufficiently smooth and slowly varying

function of position.

Thus the approximate W.K.B. solution of egn. (45) may be expressed in the form

é :¢0(x+%ihlog‘¢;n ........ (56)

Assuming constant C; is absorbed in ¢, (X)

Substituting value of ¢(x) from (6) in equation (42) and rearranging the result, we finally

obtain the approximate solution ¢,,, of equation (44) in the form
1 .
W =Cl2m(E-V)] {Aexp(%] | (V2m(E-V ))dx} ........... (57)

Where C remains arbitrary. The two solutions contained in (57) and differing in sign of the
exponent are linearly independent, and hence the approximate general solution, according to
W.K.B. approximation is

1

Vopp = Cl2M(E-V)] {(Aex;{ J (\/m)dx]+{8ex;{hlj.(\/m)dx]] ..... (58)

Xo

Where A and B are arbitrary constants. The positive exponential corresponds to a wave
moving in the positive direction and the negative exponential corresponds to a wave moving
in the negative direction. For the special case when V(x) is a constant, these reduce

respectively to the plane waves.

ipx —ipx

e’ and e *

The alternative from of equation (58) may be expressed as

X

Voo =Cl2ME-V) icosj'(,/ZmE -V )dx+¢
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Where C and [1[][Jare arbitrary constants.

The approximate solutions (57) and (58) of the Schrodinger equation are usually called
W.K.B. w -functions.

Connection Formulas for penetration of a barrier

W.K.B. method is applicable to the problems only where the potential function does not
change too rapidly, because in the regions approximation considered do not apply. In the
problems where the potential function vary slowly in some regions, so that W.K.B. method is
inapplicable; we find the solution in the regions of inapplicability of W.K.B. method by some
other methods and carry it to the regions where W.K.B. method is applicable. In order to

connect these two solutions: we need for the connection formulas.

To treat the problem of barrier penetration where W.K.B approximation is valid, we must

find how to connect solutions in the region where V>E with those where

V(x)

E>V.
V >E.

X = a (E-V)

Fig. 10.2

Consider the potential barrier shown in Fig. 10.2 suppose the energy of particle is such that E

=V at point x = a..

Classically, the particle should slow down to zero velocity at this point and then turn back.
Quantum mechanically we know that the wave penetrates some distance further into the
barrier. Obviously we cannot use the W.K.B. approximation in the region near x=a because

when E=V, the condition for its applicability breaks down.

Thus if we start with a given solution at some distance to the right of x =a (in I region) say,

(59)

o - 1 eprX-Pldx
Jpo ik
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Where P, = 1/ZmiV -E i

From W.K.B. approximation method, we know that a sufficient distance to left of x =a (in

region 1), the approximate solution will be

X P X P
go~iexp(ij. 1dX]+iexp(—'j de] ........ (60)
oo L n ), 2
@Where P, = J2m(E-V)and A and B are unknown constants . The values of A and B

cannot be found By W.K.B. method alone, because they are determined by the nature of the
solution in the region of inapplicability of W.K.B. method. To obtain the values of A and B
we need an exact solution near x = a ; but it is too complex problem to be solved. If the
W.K.B. method is applicable at small enough region x = a; then the potential function can be
represented approximately by a straight line with in region, with slope equal to that of

potential curve at the classical turning point x = a. as E =V, we can write,

V- E =C (x-a),
. oV . . . :
Where C is a constant equal to(a—j . Thus in the region x = a , the Schrodinger equation
X X=a

reduces approximately to

o’¢ 2m
-——C(x-a)p=0 ........ 61
PV (x-a)p (61)

This difficult equation can be solved by Bessel’s function The solution of the equation (61) is
carried far enough from x = a, so that W.K.B. approximation becomes applicable. In this
way, we may determine the constants A and B. Here we shall simply results without going

through the complex procedure.

Case (A) Barrier to the Right:
Let V>E, to the right of x =aand P; = w/ZmiV —E) Py = J2m(E-V)

Let us consider that far to the right of x= a, the W.K.B. approximate solution, which is

exponential, Viz.,
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B P, dx
= exp| —1| ——1|  ......... ol
o~ o {5 )

for to the left to x=a, the connection formula states this solution approaches,

cos[— i Phdx _EJ ........... (62)

¢, =
P,

Thus the connection formula may be expressed as

1 - Pldx] _ 2 ( ¢ P,dx ﬂ]
exp| —1i = ——cCos| — 1 — = (63)
VPl ( j he)odp I R4

Similarly, if the approximate solution is an increasing exponential to the right of x= a, the

following connection hold.

%sin(_ix chdX Z]: _exp( j(. ] ........ (64)

Case (B) Barrier to the Left:

For the solution which decays exponentially to the left of x=a, we obtain the connection

formula.

X

\/_ exp( a ] \/p—z os(iJ: chdx —%] ........... (65)

If the solution increases exponentially to the left, we obtain the following connection

formula.
1 tPdx
———sin| —
N . b4

10.5 SUMMARY:

i

In this lesson, we develop another approximate method, which gives a direct solution of
Schrodinger equation. This method, which is usually referred to as W.K.B. method is
applicable to potentials which are such that the Schrodinger equation is separable to one

dimensional equation,
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further, the potential should be slowly varying we obtain the W.K.B. solution of the one

dimensional schrodinger equation. Those solutions are used to describe the quantization

condition which determiner the energy values corresponding to bound state problem.

10.6

10.7

10.8

SELF ASSESSMENT QUESTIONS:

1) Explain about the Variation method.
2) Explain about the Application to ground state of Helium atom.
3) Briefly explain about the WKB method.

TECHNICAL TERMS:
The Variation method, Application to ground state of Helium atom, WKB method.
SUGGESTED READINGS:

1) Quantum Mechanics-G. Aruldhas. (Prentice-Hall of India)

2) Quantum Mechanics-Theory and Applications-A.K.Ghatak and S.Lokanathan
(Macmillan)

3) Quantum Mechanics-Gupta, Kumar & Sharma.

4) Quantum Mechanics-E.Merzbacher.

Prof. G. Naga Raju



LESSON-11

PERTURBATION THEORY

11.0 AIM AND OBJECTIVE:

Time-dependent perturbation theory, developed by Paul Dirac, studies the effect of a
time-dependent perturbation v (.t.) applied to a time independent Hamiltonian H’. The eigen

functions and eigen state of this perturbed Hamiltonian is also time-dependent.
We are interested in the following quantities:
(1) Time-dependent expected value of some observable, with a specified initial state.

(11) The time-dependent amplitudes of those quantum states that are energy eigen kets

in the unperturbed systems.

The first quantity is important because it gives rise to the classical result of a measurement
performed on a macroscopic number of copies of the perturbed system. The second quantity
looks at the time-dependent probability of occupation for each eigen state, which is
particularly useful in laser physics, where one is interested in the populations of different

atomic states in a gas where a time-dependent electric field is applied.
STRUCTURE:

11.1 Time dependent perturbation: General perturbations
11.2  Variation of constants

11.3 Summary

11.4 Technical terms

11.5 Self-assessment questions

11.6  Suggested readings
11.1 TIME DEPENDENT PERTURBATION: GENERAL PERTURBATIONS:

The theory of time-dependent perturbation theory was developed by Dirac and is
often called as Theory of variation of constant. Let us consider an unperturbed system with

wave equation including the time.



Centre for Distance Education 11.2 Acharya Nagarjuna University

11.2  VARIATION OF CONSTANTS:

Consider the time-dependent Schrodinger wave equation of an unperturbed
system.
(0)
n

#(),(0) :_%a";t ......................... 1)

If the unperturbed system is conservative, then the Hamiltonian H® depends only on the

space variable r but not on time t. Now, for such a case, the total wave function yx,? (r.t)

including time is

Where E,(ZO) is the energy of the stationary states and yxﬁ,o)(r) are eigen functions of the time-

independent wave equation.
10,002 £0), 00y (3).

The general solution of eq. (1) is a linear combination of solutions representing different

stationary states.

(i.c.) O 0)=x anw;(qo)(r, ) o )

If y/ﬁ,o)(r) 1s normalized like the functions y/,(qo)(r,t) forming an orthonormal set, then for each n

value, |a,|* represents the probability of the system in that particular stationary state. The sum

of the squares of the mixing Coefficients a, is represented as.

since [y wdr=Yay, ap=>|a,| =1
n n
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Further |a,[*=1, a,=1, when the unperturbed system is in the stationary state y/,(qo)(r,t),

then all the coefficients ax(k=#n) in eq. (4) are zero.

Now, consider the wave equation of a perturbed system.

As the Hamiltonian depends on space variables r as well as on time t, the energy cannot be
conserved and there can be no stationary states. For solving eq.(6) by perturbation theory, let

us

take the Hamiltonian H™” as sum of two terms, the time-independent Hamiltonian HO(r) of the
unperturbed system and a small perturbation H'(r,t) which depends on space variables r and

time t.

Now, the perturbed wave equation is.

w(xX], X0 0. 1))=Y ay, (t)y/,(qo)(xl,x2 ...... £)....... (8)

The Coefficients a,(t) being functions of time t.

Substituting eq. (8) in eq. (6) gives

Xay (t)HOl//,(P) +Ya,(+)H (1),/,,(10)

h 0 0a,(t) n oy
=— —————>a lt)——— 9
T e WA ©)
. n oy
Again H'yY =- " Tn_
s Vo 27 Ot
Hence, we get from (8)
h Oa,(t)
a, OH YY) = - Ny O 2l 10
2.a,OH Y =3y, = (10)
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multiply eq.(10) by yxﬁ,?)* and integrating over the configuration space. We have
. oa,(t
N B e Y e R

aa (l)

2= =a (0= Za (r)jy/m wOdr . ... (11).

with m=0,1,2,3,..............
Thus we obtained a set of first-order differential equations involving the functions an(t). At
the time t=0 a measurement of energy will lead to a particular value corresponding to one of

the stationary states of an unperturbed system because it is only for stationary states that the

energy has a definite value. Let this be denoted as El(o) .

This means at time t=0, the wave equation is represented by ://l(o) but not by eq. (4)

Hence, at time t=0,

a(0)=1, n=l=m.

an(0)=0, n#. ) ... (2.4.12.)
or  a,(0)=0mn

Therefore, we can find solution of eq.(11) numerically but physically it cannot be done, as
there are infinite equations.
If HY(x,t) is small, the rate of change of the Coefficients % is small in the time interval t=0

to t in which it acts and the relation (12) is valid throughout this interval. We now solve the

equation (11) by neglecting all terms except with n=I, retaining all (/) on the right hand side,

we have.
da, (1) 27
?:—7611(101‘11(11) ..................... (13)

Where H l(ll) = [y/l(o)* H (l)l//
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Rewriting equation 13 as

m = — 2_7[[ H/(ll)dt
a,(?) h
Integrating

gda (r)__%jH

0

(i.e.) log[ (t)]———H”)

or a,(t)= exp{—%nH,(]l)t} ................... (14).

From eq.(14), we can understand how the Coefficient a; changes during the time when the

perturbation is acting, during the time, the wave function is

5 i
a (" = exp{—%ZZ H ,(ll)t}(//l(o) (from eq. 8)

=y exp[—%n(El(o) +H,(]1))+} (usingeq.2) ...... (15)

Now, our aim is to consider the remaining set of equation in (11) and find the behaviour of

the Coefficients an(t) with m=#l.

Using the initial value of a(0)=1, on the R.H.S. of eq.2.4. 11. and neglecting all other a,’s we
obtain.

da,(t) 27 ¢ of 7 0), ()
D)2 H
dt I Jvi

y,"dr

_ 2@ oy 270 1 0), 77 (1), (0) 27 1(0)
——TJ.I/IM exp{wt?Emt v, exp _TEI t|dt
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da (1) 27 ( ) 27 (0) (0)
SL———=-—H ——\E =E K| 16
dt h ml exXp h ( l ) ( )

With ngzwo) w0y,

m

Let the field act during the time interval t=0 to t in which perturbation H" remains constant

and it is zero before and after the field applied.
Now, we integrate eq.(16) during the interval t from O to t.

We have

t 2m
a (t)__T.[H’"I h (El(o)zEr(no))+dt for m=l1.

0

—27i
2, 0 eT(El(o) _ Er(f)f)
hom 2m(ED -ED)

h
—27i(E)-E())
g0 e
R ORI
H(I)ml ! Pmit _| E,(19)—E(O)
=-— where w,,; =
h Oml h
1 1 ela)mlt
am(t)——EH’(n% .................. (17)
®
ml

Which is the first order perturbation theory.

Now, we calculate the probability of the particle in the m™ state in the following procedure:

Probability = ayy(Oay@®=/am®/> ............... (18)
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=L(6iwmlt _1)(e_iwmlt —l)XL|H(1; |2
oZmi w2

g () [P =—— Sin® (@it /2) oeeeeeeeiii (19)

w2m1 72

Let us plot y against x=my, as shown in Fig. 11.1. It can be observed that the most important
contributions to the transition probability come from those final states with energy E;, which
are very close to and centered around the initial state of energy E;. The full width of the

curve at half maximum AE 7 (20)

2r T

3 Sinz(a)mlt /2)

wzml

PATAVERTAVAV =

Fig. 11.1
If we interpret AE as the uncertain by in energy and At(t) is the certainty in time ‘t’, the

equation(20) then implies that

AE At ~ 2h

This can be explained more clearly as below: for maximum value of Y we get.

low 1) | {(wmﬂ]_(wmﬂfi{wj@,ﬂ _______ r

o2l w2 U 2 2 ) 3l
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2
= —(M] neglecting higher powers of t.

2
The highest peak value is tT , which can be easily observed from the Fig. (1).

The peak values we get, when Y is zero.

Sin2 (a)m] %) o

mel

(ie.)

(t1e.) w,, = iz—m where n=0, 1,2,3
!

This means the height of the peak values is proportional to t* and its width decreases
inversely as t. Since the area under the curve is proportional to t, the probability of time
during the system in one or another state is proportional to t, which implies the probability

per unit time.

11.3 SUMMARY:

This lesson explores Time-Dependent Perturbation Theory in quantum mechanics, which
deals with systems subjected to external forces or perturbations that vary with time. The key
concepts discussed include. Perturbations are small changes in the system that modify its
Hamiltonian, and when these changes vary with time, they are described by time-dependent
perturbations.The total Hamiltonian of a system under perturbation. The goal is to find how
the system evolves in time under the influence of this perturbation, typically using
perturbation theory to approximate the effects of V(t)V(t)V(t) on the system's state. The
variation of constants method is used to solve the time-dependent Schrodinger equation with
a perturbation.The time-dependent wavefunction can be written as a sum of unperturbed
states with time-dependent coefficients. Using this method, the time evolution of the
coefficients cn(t)c n(t)cn(t) can be determined by solving the time-dependent differential
equations derived from the Schrodinger equation.This approach provides an approximation

for the state of the system, typically expanding in terms of the strength of the perturbation.



Introductory Quantum Mechanics 11.9 Perturbation Theory

In essence, this lesson addresses how to approach quantum systems subject to time-
dependent external influences, using perturbation theory and solving for the system's

evolution through the variation of constants.
11.4 TECHNICAL TERMS:

Time dependent perturbation theory, variation of constants.
11.5 SELF-ASSESSMENT QUESTIONS:

1) Outline the theory of time-dependent perturbation theory.

2) Give a brief note on the variation of constants.
11.6 SUGGESTED READINGS:

1) Quantum Mechanics-R.D.Ratna Raju.
2) Principles of Quantum Mechanics-R.Shankar (Plenum Press).

3) Molecular Quantum Mechanics-P.W.Atkins.

Dr. S. Balamurali Krishna



LESSON-12

EINSTEIN TRANSITION PROBABILITY

12.0 AIMAND OBJECTIVES:

The aim of this lesson is to introduce the concept of transition to the continuum and
the Einstein transition probabilities in quantum mechanics. Students will understand how a
quantum system interacts with an electromagnetic field, leading to transitions between
discrete states and the continuous spectrum. Additionally, they will learn how to calculate
transition rates and probabilities using Einstein's theory. By the end of this lesson, students
should be able to: Understand the concept of transition to the continuum, which occurs
when a quantum system, initially in a discrete energy state, interacts with an external field
and transitions to a continuous energy spectrum. Apply Einstein transition probabilities to
calculate the likelihood of these transitions occurring between discrete and continuum states.
Derive and understand the selection rules governing these transitions, including the
conditions for allowed and forbidden transitions. Gain familiarity with the practical
applications of these concepts in atomic, molecular, and solid-state physics, particularly in

processes such as absorption, emission, and ionization.
STRUCTURE:

12.1 Transition to the Continuum

12.2 Einstein Transition Probabilities

12.3 Summary

12.4 Technical Terms

12.5 Self-Assessment Questions

12.6 Suggested Readings

12.1 TRANSITION TO THE CONTINUUM:

We have so far considered transition between states and m and 1. We shall now consider
transitions from a discrete state m to a continuum of states around E;, where the densities of
state are p(m). When the final states are densely packed forming a continuum, we can replace

the summation by an integral. In order to obtain the explicit expression for transition
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probability, let us assume that the system is enclosed in a cubical box. The stationary states of
the system are discrete, but separated in energy by an interval, which is inversely proportional

to the volume of the box.

If we consider a box of infinite size, the levels within the energy interval increases and merge

into a continuum.

Now the transition probability for m" state is given as.

5 4.Sin?(@mt!2)

1
r a2 ) 2 23
hw“m]

ml

In this, the probability is largest for the states whose unperturbed energy ES?) is close to El(o).

As the levels are closer, they form a cluster around E,(,(,))—EI(O) and all the levels in the cluster

nearly represent the same physical properties. Summing all levels in the cluster and we get

the total transition.

Probability (i.e.) XJam(t)]

(e) Xl am))?= [ am ()| p(m)dE

Where p(m) is the density of final states and p(m)dE is the number of such states in the range
dE.

Instead of considering transition to a particular state, we may consider transition to group of

states of nearly equal energies. The probability of transition per unit time is now obtained, by

)
L 4Sin (a)mlt/2) . . . . .
considering the central peak of —————— as the domain of integration in the interval

0" ml

(-00,00).

1 O 4.8in (ot 2
P(r)=h—2|H,(,2 2 p(m) | === (2“”"’ it
—00

O " ml

E=hw,dE=hdw

_ .2
1 (1) 2 0 4Sin (a)m]t/Z)
= o \mit 2y

—00 @~ ml
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on integration, we get.
_ 1 1) 2
Py | H) P p(m) 27
Transition per unit time is
2r
T==IH " pm)

Which has wide application in quantum mechanics.

This is known as Fermi’s Golden Rule. It may be concluded that the transition probability

per unit time"”

is proportional to |H’(2 2.

Is proportional to p(m) density states.

Is non-zero only between continuum states of the equal energy.
12.2 EINSTEIN TRANSITION PROBABILITIES:

Spontaneous emission, absorption and induced emission of radiation were satisfactorily given
by Direct. In this we discuss the Einstein Coefficients of emission and absorption of

radiation.

The transition taking place from a non-degenerate stationary state of energy Ex to another
degenerate stationary state Ej(E,>E;) causing an emission or absorption of radiation of

frequency, is given, according to Bohr’s frequency rules, as

9y =Lk ;El ........................ (2.4.20)

The probability that a system in the lower energy state absorb a quantum of radiation energy

and goes to the higher state in unit time is.

Bi_s i p(%k1)

B.m 1s known as Einstein’s Coefficient of absorption. Let N atoms are present in a state at

any instant of time then number of transition per second is
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Ny Bk p(9k1)
The probability of emission consists of two parts (i.e.) one part independent of the radiation
density and the other proportional to the density.

Since the transition from the upper state to lower state energy causes an emission of radiation

of energy is.

Ak —s] +Bi—1 P9k )
in which Ay is the Einstein Coefficient of spontaneous emission Bg.jis the Einstein
Coefficient of induced emission.

Now, let the number of atoms in this state is denoted by Ny then the number of reverse

transition is.

Ni[dk—s1 +Br—1p(%%]

The emission and absorption must be equal at the thermal equilibrium.

NiBI->kp(947) = Nt [Ak—>1 + Bi—>17(9k1 )]

N _ Ag—s1 +Bi—>1 (%) 0
Ni Bi_s k(%)

From quantum statistical mechanics.

N
N—l=—(E1—Ek)|KT=eh9k”KT (2)
k

Equating (1) and (2), we get

KT _ [Ak=>1 +Bi—>1 09k )]
Bi—>k p(9k1)

2
or Bl_skp(9k1 )" KI/KT-Bg_s1p(941)= Ak >/

Ap—>1]
h
JIkKe _

or p(9y) =

Bl >k K—>1

The radiation energy, according to Planck’s law, is
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8T1h 93 1
plv)= 211

c3

' [ex(— h9/ Kt)—l]

Hence Einstein Coefficients are related by

Bi>m=Bmn

and A

87h 3,
T

-k

12.3 SUMMARY:

This lesson focuses on two key topics in quantum mechanics: the transition to the

continuum and Einstein transition probabilities.

1) Transition to the Continuum:

o

In quantum systems, when an electron absorbs enough energy (for example, from
a photon), it can transition from a discrete bound state to a continuum of unbound

states, known as ionization.

This phenomenon is important in understanding processes like photoionization,
where an atom or molecule absorbs a photon and an electron is ejected, entering

the continuous spectrum.

2) Einstein Transition Probabilities:

o

Einstein transition probabilities describe the likelihood of quantum transitions
between energy states induced by electromagnetic radiation (absorption or

emission).

These probabilities are derived from the interaction between the system and the
electromagnetic field and depend on factors like the dipole matrix elements and

the frequency of the radiation.

The lesson covers Einstein’s relations for the transition rates in both absorption
and spontaneous emission, and explains how these are related to the lifetime of

excited states and the intensity of radiation.

In addition, the lesson addresses selection rules, which determine the allowed and

forbidden transitions based on symmetries and conservation laws. These rules help to predict

the outcome of radiation interactions with quantum systems.
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In summary, the lesson provides students with the theoretical framework for
understanding how transitions occur between bound and unbound states in quantum systems,
along with practical methods for calculating transition rates using Einstein's formalism.

12.4 TECHNICAL TERMS:

Transition to the Continuum, Fermi golden rule.

12.5 SELF-ASSESSMENT QUESTIONS:
1) Discuss Einstein transition probabilities.
2) State and probe Fermi-Goden rule for the rate of transitions induced by a constant
3) Perturbation.

4) Calculate the transition probability per unit time and per unit of radiation.

12.6 SUGGESTED READINGS:
1) Quantum Mechanics-R.D.Ratna Raju.
2) Principles of Quantum Mechanics-R.Shankar (Plenum Press).

3) Molecular Quantum Mechanics-P.W.Atkins.

Dr. S. Balamurali Krishna



LESSON-13

APPROXIMATION EXPRESSIONS

13.0 AIM AND OBJECTIVE:

The aim of this lesson is to explore the behavior of a charged particle in an electromagnetic
field under different approximations, specifically the adiabatic approximation and the sudden
approximation. Students will learn how these approximations influence the particle’s
dynamics and gain insight into how the system responds to time-varying electromagnetic

fields.By the end of this lesson, students should be able to:

1) Understand the dynamics of a charged particle in an electromagnetic field,

including the forces exerted on the particle by both electric and magnetic fields.

2) Apply the adiabatic approximation to systems where the external parameters (such
as the magnetic field) change slowly over time, and explain the resulting effects on

the particle’s motion.

3) Use the sudden approximation to describe systems where the external parameters

change abruptly, and understand the implications for the particle's energy and state.

4) Compare and contrast the adiabatic and sudden approximations in terms of their

assumptions and applications to quantum and classical systems.

STRUCTURE:

13.1 A Charged Particle in an Electromagnetic Field
13.2 Adiabatic Approximation

13.3 Sudden Approximation

13.4 Summary

13.5 Technical Terms

13.6 Self-Assessment Questions

13.7 Suggested Readings

13.1 A CHARGED PARTICLE IN AN ELECTROMAGNETIC FIELD:

In order to apply the time-dependent perturbation theory to the charged particle, the effect of

electric and magnetic fields on the particle must be investigated.
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The electromagnetic force on a particle of charge e, and mass m moving with velocity v in an
electromagnetic field characterised by electric field E and magnetic field B (or scalar potential ¢ and

vector potential A) is

FecEseP
C

¢ being speed of electromagnetic waves.

<On|Gn>+<n| $>=0

<n|d.>=10u(t), a—>real.

tr(.)

For new eigen function ¢n = ¢ne

We have <o |e>=T(0r+y).

Choosing vy suitably, we can make this vanish. Hence

' a OH t C
o =y—1 - { i dt}
n ; ha,nn <¢n | af |¢Z>CXp léa)nl( )

Let the System be initially at state m and the time variation is small: thus

1 0w io
0, ~ e ™ n#m
" <¢n| Py |¢m>

h

Dnn

1 ow io
o,lt)= — mn- — |
A (t) . <¢n|at|¢m>e

Dnn

With the above approximation this equation shows that the probability amplitude for a state other than
the initial states oscillates in time and show no steady increase over long periods of time even though

H changes by a finite amount.

13.2 ADIABATIC APPROXIMATION:

In the adiabatic case, we expect on physical grounds that solutions of the Schrodinger equation can be
approximated by means of stationary eigenfunctions of the instantaneous Hamiltonian, so that a
particular eigenfunction at one time goes over continuously into corresponding eigenfunction at a later

time.
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If the equation

H(t)¢n ()= E, (t)¢n (?)

can be solved at any time we assume that a system that is discrete non-degenerate state yxﬂ,?) with

energy E£,9) at t=(0) is likely to be in the state ¢,§’) with energy Eﬁf) at time t, provided that H(t) varies

very slowly with time.

The wave function y obeys the time-dependent schrodinger equation.

5 OV _

i = H(ew

v =sa,0) (f)exp[.l}Ez (z’)dr}
I iho

Then XIh[a,¢, + a\d ][exp#ﬁ:, (t')dt} =0
/ 0

Multiplying by ¢,, we has

%[al <¢n |¢l > +a <¢n |¢l >]eXp|:%(})El(t’)_En(t’)dt’:lzo

. '
or 0,=-%a,<¢,|@ >exp %}El(t)—E,g )dt
0

To evaluate <d,|¢>, we have

oH
E@ +Hpp=Ey + Ejy

or <¢n|%—f|¢,>+En<¢n|¢l>=E,<¢n|¢,>=El<¢n|¢l>

oH
<¢n |8t|¢l>

E -E

or <¢n |¢l>:

n
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To find <,/ >, on differentiating <¢,|p,>=1 w.r.t. time.

13.3 SUDDEN APPROXIMATION:

The sudden approximation consists of the change in Hamiltonian discontinuous on different times.
Suppose that ~ H=H, fort<0

and H=H, fort >0
Then Houn =E,919n fort<0

HOun:En‘gn fort >0
v = Zaue’fy

and Y= Zatute_iE” %
e
Equating the two solutions at t(0)=0.

b,=%a, <u,|u, >
e

The sudden approximation consists in using above equation when the change in the Hamiltonian

occupies a very short finite interval of time t,. Suppose that

H=H, fort<0,
H=H, fort>0
and H=H, for 0 <t <t,.

The intermediate Hamiltonian H; which is taken constant in time, has a complete set of energy eigen

functions:
H; Wi = E Wi

The exact solution can be expanded in terms of the u’s with constant coefficients.

w:%Cka exp(— ik %lf0r0<t<t0
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Application of the continuity condition at t=0 gives

Ck =xa, < Wk | Wn >= zan</’c|n>
n n

and at t=t, gives

b, :%Ck<,u | k>exp{— i(Ek —Ey)ta /h}
:zan<ﬂ|k>exp{—i(Ek _Et)to/h}<k|n>

When t=0, the exponential is equal to unity and b, is given by (1).

The sudden approximation will be best only when t, is small. So on expansion exponential term in

above equation.

ag zZan§<,u|k>[ —Z%O(Ek —Et)}<k|n>

o o= Xaul B, -m)in

Thus error in sudden approximation is proportional to t, for small t,. If H; depends upon time, then

j({OHldz can be taken in place of Hjt,.

IfH 1 :Ho then

btzakm%o<k|Hi—H0|m>

This can be used even when (h-H,) is not small as compared to H, taking t, small.

134 SUMMARY:

This lesson examines the motion of a charged particle in an electromagnetic field, considering two
important approximations: the adiabatic approximation and the sudden approximation.Charged
Particle in an Electromagnetic Field: The motion of a charged particle under the influence of both
electric and magnetic fields is governed by the Lorentz force law. This force combines the effects of

the electric field E and the magnetic field B, influencing the particle's trajectory.
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The adiabatic approximation is used when the external fields (such as the magnetic field) change
slowly with time compared to the particle’s response time. In this approximation, the system remains
in an instantaneous eigenstate of the Hamiltonian as it evolves. The particle’s energy changes
smoothly as the system’s parameters evolve. For example, in a magnetic field that changes slowly, the
charged particle’s quantum states (such as Landau levels) will adapt adiabatically to the changing
field, preserving their quantum numbers. This approximation is particularly useful in processes where
the time scale of the external perturbation is much longer than the time scale of the particle’s
dynamics.The sudden approximation applies when the external parameters (such as the magnetic
field) change abruptly, much faster than the particle can adjust.In this case, the system’s wavefunction
does not follow the instantaneous eigenstate of the new Hamiltonian. Instead, it is assumed that the
system retains its initial quantum state immediately after the change, with the energy adjusting
according to the new conditions. This approximation is often used in processes like sudden changes in
potential, where the particle's state "jumps" to a new configuration due to the rapid change in the
environment.The adiabatic approximation assumes slow changes and smooth evolution of the system,
leading to a gradual transition between states. The sudden approximation, on the other hand, assumes
rapid changes and immediate response, where the system does not have time to adapt. These two
approximations provide useful tools for solving different types of problems involving time-dependent

fields, depending on how fast the external parameters change in comparison to the system's dynamics.

In summary, the lesson discusses how a charged particle behaves in electromagnetic fields under
different temporal conditions, emphasizing the roles of the adiabatic and sudden approximations.
These approximations allow for simplified models that make it possible to predict the behavior of the
system under various external influences, with practical applications in both classical and quantum

systems.

13.5 TECHNICAL TERMS:

Adiabatic Approximation, Sudden Approximation.

13.6 SELF-ASSESSMENT QUESTIONS:

1) Write notes on Adiabatic approximation.

2) Sudden approximation.

13.7 SUGGESTED READINGS:
1) Quantum Mechanics - Gupta, Kumar & Sharma.
2) Advanced Quantum Mechanics — Rajput.
3) Quantum Mechanics — R.D.Ratna Raju.
4) Principles of Quantum Mechanics — R.Shankar (Plenum Press).
5) Molecular Quantum Mechanics — P.W.Atkins.

Dr. S. Balamurali Krishna



